留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene/SA凝胶微球的制备及对U(VI)的吸附性能

李仕友 胡俊毅 贺俊钦 汪杨 乔记帅 王国华

李仕友, 胡俊毅, 贺俊钦, 等. MXene/SA凝胶微球的制备及对U(VI)的吸附性能[J]. 复合材料学报, 2021, 39(0): 1-12
引用本文: 李仕友, 胡俊毅, 贺俊钦, 等. MXene/SA凝胶微球的制备及对U(VI)的吸附性能[J]. 复合材料学报, 2021, 39(0): 1-12
Shiyou LI, Junyi HU, junqin HE, Yang WANG, Jishuai QIAO, Guohua WANG. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica.
Citation: Shiyou LI, Junyi HU, junqin HE, Yang WANG, Jishuai QIAO, Guohua WANG. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica.

MXene/SA凝胶微球的制备及对U(VI)的吸附性能

基金项目: 国家自然科学基金 (51904155); 2020 年度校级科研课题(200XQD025)
详细信息
    通讯作者:

    王国华,博士,副教授,硕士生导师,研究方向为放射性污染治理与资源化 E-mail: wghcsu@163.com

  • 中图分类号: TB3333

Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)

  • 摘要: 为了提高纳米材料MXene的吸附能力和可回收性,采用离子交联法将海藻酸钠(SA)和MXene混合,使Ti3C2Tx MXene纳米材料固定在SA凝胶基质上,经冷冻干燥后制备了MXene/SA凝胶微球。通过SEM-EDS、FTIR和XPS对凝胶微球结构进行了表征,并考察了不同因素影响下MXene/SA凝胶微球对水溶液中铀(VI)的吸附特性,并探究了其循环再生能力。结果表明,MXene/SA凝胶微球对铀吸附过程遵循拟二级动力学和Langmuir等温吸附模型,说明该吸附主要为单分子层化学吸附,且热力学参数表明其吸附过程是一个自发吸热的过程。在pH为4,温度为298 K时,MXene/SA凝胶微球对铀的最大吸附量为126.82 mg·g-1,其主要吸附机理是离子交换与络合作用。更为重要的是该凝胶微球经五次循环后,去除率仍然保持在90%以上,说明吸附剂具有回收再生利用性能,且不会造成水环境的二次污染。因此,MXene/SA凝胶微球吸附剂在修复放射性核素铀废水污染方面表现出巨大潜力。

     

  • 图  1  MXene/海藻酸钠(SA)凝胶微球主要制备步骤

    Figure  1.  The main preparation steps of MXene/sodium alginate (SA) gel microspheres

    图  2  Ti3C2Tx(a)、SA凝胶微球 (b)、(c)及(d)分别代表MXene/SA凝胶微球吸附U(VI)前后的SEM图;(e)及(f)分别代表MXene/SA凝胶微球吸附U(VI)前后EDS图

    Figure  2.  Ti3C2Tx (a), SA gel microspheres (b), (c) and d) represent SEM images of MXene/SA gel microspheres before and after adsorption; (e) and (f) represent EDS images before and after adsorption

    图  3  Ti3C2Tx、SA凝胶微球以及MXene/SA凝胶微球吸附前后的FTIR图

    Figure  3.  FTIR diagram of Ti3C2Tx、 SA gel microspheres and MXene/SA gel microspheres before and after adsorption

    图  4  MXene/SA和MXene/SA-U(VI)的全谱图(a)、 U 4f光谱图(b)、 Ca 2p光谱图(c)、 C1s光谱图(d)、 O 1s光谱图(e)

    Figure  4.  MXene/SA and MXene/SA-U(VI) (a) full spectrum,(b) U 4f spectrum,(c) Ca 2p spectrum,(d) C 1s spectrum,(e) O 1s spectrum

    图  5  不同配比MXene/SA吸附剂对U(VI)的吸附容量对比

    Figure  5.  Comparison of MXene/SA adsorption capacity of different ratio adsorbents for U(VI)

    图  6  (a)不同pH值下U(VI)形态分布曲线图,(b)不同pH值下MXene/SA对U(VI)吸附性能的影响, (c)不同硝酸钠离子强度下对MXene/SA吸附剂吸附U(VI)的影响

    Figure  6.  (a) U(VI) morphology distribution curve at different pH values,(b) The effect of MXene/SA on the adsorption performance of U(VI) at different pH values,(c) The MXene/SA adsorbent under different sodium nitrate ionic strengths The effect of adsorption U(VI)

    图  7  不同MXene/SA投加量吸附U(VI)的影响

    Figure  7.  The influence of different MXene/SA dosage on the adsorption of U(VI)

    图  8  (a) 接触时间对MXene/SA凝胶微球吸附不同浓度U(VI)的影响,(b)拟一级动力学模型拟合曲线, (c)拟二级动力学模型拟合曲线,d)颗粒内扩散模型拟合曲线

    Figure  8.  (a) The influence of contact time on the adsorption of different concentrations of U(VI) by MXene/SA gel microspheres,(b) Quasi-first-order adsorption kinetic model fitting curve, (c) Quasi-second-order adsorption kinetic model fitting curve, (d) Intra-particle diffusion model fitting curve

    qt —adsorption capacity at time t; qe—equilibrium adsorption capacity; t —adsorption time

    图  9  (a) MXene/SA吸附 U(VI)的非线性等温模型拟合,(b) lnKL与 1/T 的关系图

    Figure  9.  (a) Fitting of nonlinear isothermal model of MXene/SA adsorption of U(VI), (b) Relationship between ; lnKL and 1/T

    qe—equilibrium adsorption capacity; Ce —uranium concentration at adsorption equilibrium; KL—langmuir coefficient related to the affinity of binding site; T —temperature.

    图  10  MXene/SA吸附剂循环再生实验

    Figure  10.  MXene/SA adsorbent cycle regeneration test

    表  2  Langmuir和Freundlich吸附等温线模型的相关参数

    Table  2.   Related parameters of Langmuir and Freundlich adsorption isotherm simulation

    T/KLangmuir isothermFreundlich isotherm
    qmax/(mg·g-1)KL/(L·mg-1)R2KF/(mg·g-1)nR2
    288150.3820.2730.99438.1230.1470.991
    298154.3090.3730.98443.5810.2410.974
    308159.0310.5390.97557.3810.3000.963
    Notes: qmax is adsorption capacity per unit mass of the adsorbent; KL is the langmuir coefficient related to the affinity of binding site; KF and n are the constants that are related to the adsorption capacity and the adsorption intensity,respectively.
    下载: 导出CSV

    表  3  MXene/SA吸附U(VI)的热力学参数

    Table  3.   Thermodynamic parameters of MXene/SA adsorption of U(VI)

    T/KlnKLΔG0/(kJ·mol−1)ΔH0/(kJ·mol−1)ΔS0/(J·(mol·K)−1)
    2883.59−8.6021.07103.18
    2983.95−9.79
    3084.16−10.65
    Notes: T is the thermodynamic temperature; KL is the equilibrium constant at different temperatures;ΔH0 is the standard enthalpy change;ΔG0 is the standard free energy change;ΔS0 is the standard entropy change.
    下载: 导出CSV

    表  1  MXene/SA凝胶微球对U(VI)的吸附动力学参数

    Table  1.   The adsorption kinetic parameters of U(VI) on MXene/SA gel microspheres

    C0/(mg·L−1)51015
    qe,exp/(mg·g−1)9.719.2828.5
    Pseudo-first-order model k1/min−1 0.018 0.016 0.014
    qe,cal/(mg·g−1) 9.851 19.426 28.509
    R2 0.877 0.853 0.975
    Pseudo-second-order model k2/min−1 0.002 0.001 0.001
    qe,cal/(mg·g−1) 11.072 21.966 32.783
    R2 0.997 0.995 0.996
    Intraparticle diffusion model kp1/(mg·(g·mim0.5)−1) 0.872 1.745 2.459
    C1 −0.774 −2.069 −3.352
    R12 0.997 0.942 0.930
    kp2/(mg·(g·mim0.5)−1) 0.126 0.529 1.010
    C2 7.746 11.207 11.764
    R22 0.720 0.665 0.963
    kp3/(mg·(g·mim0.5)−1) 0.028 0.020 0.075
    C3 9.203 18.856 26.896
    R32 0.652 0.575 0.590
    Notes:C0 is the initial U(VI) ions concentration; qe,exp is the calculated amount of adsorption equilibrium; qe,cal is the actual amount of adsorption equilibrium; k1 and k2 are first order rate constant and second order rate constant,respectively;kp1,kp2,kp3 is particle diffusion constant.
    下载: 导出CSV
  • [1] XIE Y, CHEN C, REN X, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation[J]. Progress in Materials Science,2019,103:180-234. doi: 10.1016/j.pmatsci.2019.01.005
    [2] WANG X, CHEN L, WANG L, et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides[J]. Science China Chemistry,2019,62(8):933-67. doi: 10.1007/s11426-019-9492-4
    [3] ZAHERI P, DAVARKHAH R. Selective separation of uranium from sulfuric acid media using a polymer inclusion membrane containing alamine336[J]. Chemical Papers,2020,74(8):2573-81. doi: 10.1007/s11696-019-01029-9
    [4] ORREGO P, HERNANDEZ J, REYES A. Uranium and molybdenum recovery from copper leaching solutions using ion exchange[J]. Hydrometallurgy,2019,184:116-22. doi: 10.1016/j.hydromet.2018.12.021
    [5] OROZCO I, ROMERO M, LARA R, et al. Precipitation of uranium from alkaline liqueurs [J]. Materia-Rio de Janeiro, 2018, 23(2).
    [6] BERGER C, MARIE C, GUILLAUMONT D, et al. Extraction of Uranium(VI) and Plutonium(IV) with Tetra-Alkylcarbamides[J]. Solvent Extraction and Ion Exchange,2019,37(2):111-25. doi: 10.1080/07366299.2019.1630095
    [7] YU S, MA J, SHI Y, et al. Uranium(VI) adsorption on montmorillonite colloid[J]. Journal of Radioanalytical and Nuclear Chemistry,2020,324(2):541-9. doi: 10.1007/s10967-020-07083-y
    [8] CHEN S, HU J, HAN S, et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade[J]. Separation and Purification Technology,2020:251.
    [9] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater,2011,23(37):4248-53. doi: 10.1002/adma.201102306
    [10] ALHABEB M, MALESKI K, MATHIS T S, et al. Selective Etching of Silicon from Ti3 SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene)[J]. Angew Chem Int Ed Engl,2018,57(19):5444-8. doi: 10.1002/anie.201802232
    [11] HAN M, YIN X, LI X, et al. Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes [J]. 2017: 20038-45.
    [12] SHAHZAD ASIF R K, MIRAN Waheed. Two-Dimensional Ti3C2Tx MXene Nanosheets for Efficient Copper Removal from Water [J]. ACS Sustainable Chemistry & Engineering 2017, 5(12): 11481-8.
    [13] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2).
    [14] ZHANG Y-J, ZHOU Z-J, LAN J-H, et al. Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene[J]. Applied Surface Science,2017,426:572-8. doi: 10.1016/j.apsusc.2017.07.227
    [15] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes)[J]. Adv Mater,2018,30(52):e1804779. doi: 10.1002/adma.201804779
    [16] WANG L, SONG H, YUAN L, et al. Efficient U(VI) Reduction and Sequestration by Ti2CTx MXene[J]. Environ Sci Technol,2018,52(18):10748-56. doi: 10.1021/acs.est.8b03711
    [17] POGREBNJAK A, SUKHODUB L, SUKHODUB L, et al. Composite material with nanoscale architecture based on bioapatite, sodium alginate and ZnO microparticles[J]. Ceramics International,2019,45(6):7504-14. doi: 10.1016/j.ceramint.2019.01.043
    [18] JIAO C, XIONG J, TAO J, et al. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study[J]. Int J Biol Macromol,2016,83:133-41. doi: 10.1016/j.ijbiomac.2015.11.061
    [19] 朱韵伊, 彭伟, 林泽慧, 等. MXene基水凝胶复合材料的研究进展[J]. 复合材料学报, 2021, 38(7):2010-2024.

    ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2010-2024(in Chinese).
    [20] ZHANG T, ZHANG W, XI H, et al. Polydopamine functionalized cellulose-MXene composite aerogel with superior adsorption of methylene blue[J]. Cellulose,2021,28(7):4281-93. doi: 10.1007/s10570-021-03737-6
    [21] SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal,2019,368:400-8. doi: 10.1016/j.cej.2019.02.160
    [22] FENG Y, WANG H, XU J, et al. Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo Red from aqueous solution[J]. J Hazard Mater,2021,416:125777. doi: 10.1016/j.jhazmat.2021.125777
    [23] ZHANG Z-H, XU J-Y, YANG X-L. MXene/sodium alginate gel beads for adsorption of methylene blue[J]. Materials Chemistry and Physics,2021:260.
    [24] 郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(VI)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7):2140-2151.

    GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica,2021,38(7):2140-2151(in Chinese).
    [25] YI X, SUN F, HAN Z, et al. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal[J]. Ecotoxicol Environ Saf,2018,158:309-18. doi: 10.1016/j.ecoenv.2018.04.039
    [26] LIU H, ZHOU Y, YANG Y, et al. Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution[J]. Applied Surface Science,2019,471:88-95. doi: 10.1016/j.apsusc.2018.11.231
    [27] ZHANG W, WANG H, HU X, et al. Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(VI) removal[J]. Journal of Cleaner Production,2019,231:733-45. doi: 10.1016/j.jclepro.2019.05.219
    [28] SHAHZAD A, MOZTAHIDA M, TAHIR K, et al. Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions[J]. Journal of Nuclear Materials,2020:539.
    [29] JUN B-M, JANG M, PARK C M, et al. Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater[J]. Nuclear Engineering and Technology,2020,52(6):1201-7. doi: 10.1016/j.net.2019.11.020
    [30] ZHANG P, WANG L, DU K, et al. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets[J]. J Hazard Mater,2020,396:122731. doi: 10.1016/j.jhazmat.2020.122731
    [31] 郑骁, 王学松, 陈光, 等. 离子强度和pH对针铁矿吸附水溶液中Cd(Ⅱ)的影响 [J]. 环境工程, 2019, 37(7).

    ZHENG Xiao, WANG Xuesong, CHEN Guang, et al. Effect of ionic strength and pH on adsorption of Cd(Ⅱ) on Goethite from aqueous solution [J]. Environmental Engineering, 2019, 37(7)(in Chinese).
    [32] 伍随意, 李仕友, 胡俊毅, 等. 聚乙烯亚胺改性磁性酵母复合材料去除铀(VI)的性能[J]. 复合材料学报, 2021, 38(9):3065-3075.

    WU Suiyi, LI Shiyou, HU Junyi, et al. Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium (VI)[J]. Acta Materiae Compositae Sinica,2021,38(9):3065-3075(in Chinese).
    [33] ZHANG W, SONG J, HE Q, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal[J]. J Hazard Mater,2020,384:121445. doi: 10.1016/j.jhazmat.2019.121445
  • 加载中
计量
  • 文章访问数:  235
  • HTML全文浏览量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 录用日期:  2021-10-31
  • 修回日期:  2021-10-27
  • 网络出版日期:  2021-12-01

目录

    /

    返回文章
    返回