Design and self-repair behavior of clay-cured microcapsule composite cementitious materials
-
摘要:
水泥基材料时当今运用最为广泛的建筑材料。然而水泥基材料服役期间由于自身脆性较大容易产生微裂纹,进而发展为宏观裂纹,为氯离子等有害离子提供了通道,加速建筑结构的腐蚀进程,对钢筋混凝土结构造成破坏。常规的修复方法(表面封闭法、压力灌浆法、填堵法等)对混凝土内部不可见微裂纹的修复作用并不明显,而本征型自修复技术作为一种主动修复方法,主要通过在微裂缝区生成难溶的结晶沉淀从而实现损伤自修复,其最大的优点在于修复材料和混凝土结构一致或者类似。通过圆锅造粒法,制备了以粘土固化剂、膨润土、MgO膨胀剂和微晶纤维素为芯材,以乙基纤维素(EC)为壁材的微胶囊,并与水泥基材料进行复合制备,通过探索得到了各个物质的最佳掺量,能够在几乎不影响水泥基体强度的情况下,使得水泥基体的自修复能力得到提高。研究了数字散斑相关方法(DSCM)对加载过程中的自修复微胶囊/水泥基复合材料的变形行为并进行了追踪测试,分析了应力应变曲线、应变场分布、灰度相关系数特征值(Stc)和应变特征值(Sts)之间的变化规律,进而得出自修复微胶囊/水泥基复合材料基于填补裂纹、限制裂纹发展、修复裂纹的力学自修复机制。研究结果表明:微胶囊的最佳配方为:粘土固化剂为10wt%、MgO膨胀剂为35wt%、微晶纤维素为6wt%,膨润土为49wt%;随着微胶囊掺量的增加,自修复微胶囊/水泥基复合材料的抗压强度降低,当微胶囊掺量为3 %时,自修复微胶囊/水泥基复合材料的抗压强度下降相对较少且具有较高的强度恢复率为103.8%。 含3wt%微胶囊的样品修复后的应变场、应力应变、Stc和Sts的关系曲线 Abstract: Using the round pot granulation method, through the design and optimization of the microcapsule process and formulation parameters, microcapsules with clay solidifying agent, bentonite, MgO expansion agent and microcrystalline cellulose as the core material and ethyl cellulose (EC) as the core material were prepared. For the microcapsules of the wall material, the influence of the components of the microcapsule core material on the self-healing effect of the self-healing microcapsule/cementitious composite material was explored by orthogonal experiments, and the optimal composition of the microcapsule core material was determined: that is, the clay curing agent is 10wt% , MgO expansion agent is 35wt%, microcrystalline cellulose is 6wt%, and bentonite is 49wt%. The results show that the compressive strength of self-healing microcapsule/cementitious composite decreases with the increase of the content of microcapsules. When the content (mass to cement) of microcapsules is 3%, the compressive strength of self-healing microcapsule/cementitious composite is only dropped by 4% with a high strength recovery rate of 103.8%. The deformation behavior of self-healing microcapsule/cementitious composites during loading was traced and tested by the digital speckle correlation method (DSCM). From the stress-strain curve, strain field distribution, gray correlation coefficient eigenvalues (Stc) and strain eigenvalues (Sts), the self-healing mechanism of self-healing microcapsule/cementitious composite is based on the fact that when the microcapsules rupture, the cement-based homologous substances(AFt, Mg(OH)2) are generated to fill the cracks, limit the development of cracks, and achieve the purpose of repairing cracks.-
Key words:
- microcapsule /
- cement-based material /
- clay curing /
- mechanical damage /
- self-healing behavior
-
图 15 不同微胶囊掺量的水泥基自修复材料 样品预压至60% σmax (左)和在大气环境下修复后加载至60% σmax (右)X方向的应变场:(a)0 %;(b)3%
Figure 15. Samples of cement-based self-repairing materials with different content of microcapsules were pre-pressed to 60% σmax (left) and the strain field loaded to 60% σmax (right) X direction after repair in atmospheric environment: (a)0%; (b)3%
表 1 微胶囊固料配合比
Table 1. Solid material mix ratio of microcapsules
Clay curing agent/wt% MgO expansion agent/wt% Microcrystalline cellulose/ wt% Bentonite/
wt%10 35 6 49 表 2 微胶囊组分三因素四水平正交试验设计表
Table 2. Three-factor and four-level orthogonal experimental design of microcapsule components
No.A
Clay curing agent /wt%B
MgO expansion agent /wt%C
microcrystalline
cellulose/wt%D
bentonite
/wt%1(A1B1C1) 5 5 2 88 2(A1B2C2) 5 15 4 76 3(A1B3C3) 5 25 6 64 4(A1B4C4) 5 35 8 52 5(A2B1C2) 10 5 4 81 6(A2B2C1) 10 15 2 73 7(A2B3C4) 10 25 8 57 8(A2B4C3) 10 35 6 49 9(A3B1C3) 15 5 6 74 10(A3B2C4) 15 15 8 62 11(A3B3C1) 15 25 2 58 12(A3B4C2) 15 35 4 46 13(A4B1C4) 20 5 8 67 14(A4B2C3) 20 15 6 59 15(A4B3C2) 20 25 4 51 16(A4B4C1) 20 35 2 43 表 3 微胶囊囊芯组分对自修复微胶囊/水泥基复合材料的抗压强度和强度恢复率的影响正交试验结果
Table 3. Effects of microcapsule core components on compressive strength and strength recovery rate of self-healing microcapsule/cement-based composites: orthogonal test results
No. Compressive strength
/MPaRepair strength
/MPaRepair efficiency
/%1(A1B1C1) 52.2 58.7 112.5 2(A1B2C2) 45.4 56.3 124.0 3(A1B3C3) 52.6 58.6 111.4 4(A1B4C4) 61.4 77.6 121.1 5(A2B1C2) 73.4 76.8 104.7 6(A2B2C1) 68.3 57.7 84.4 7(A2B3C4) 55.6 73.3 131.9 8(A2B4C3) 76.4 79.3 103.8 9(A3B1C3) 62.2 73.5 118.2 10(A3B2C4) 69.3 62.5 90.2 11(A3B3C1) 67.2 67.0 99.7 12(A3B4C2) 59.4 34.3 57.7 13(A4B1C4) 62.9 57.1 90.8 14(A4B2C3) 68.6 56.0 81.6 15(A4B3C2) 72.7 64.5 88.7 16(A4B4C1) 68.2 70.0 102.6 表 4 以水泥基自修复材料抗压强度为指标的F值分析表
Table 4. F value analysis table with compressive strength of cement-based self-repairing materials as index
Factor Sums of squared deviations Degree of freedom Mean square F Clay curing agent (A) 635.30 3 211.77 5.17 MgO expansion agent (B) 45.35 3 15.12 0.17 Microcrystalline cellulose (C) 17.47 3 5.82 0.06 Note: F—Statistics of variance. 表 5 各因素对水泥基自修复材料抗压强度作用的均值分析表
Table 5. Analysis of the mean value of each factor against compressive strength
Factor K1 j K2 j K3 j K4 j Clay curing agent (A) 52.900 68.425 64.525 68.100 MgO expansion agent (B) 62.675 62.900 62.025 66.350 microcrystalline cellulose (C) 63.975 62.725 64.950 62.300 Note: K—Average value. 表 6 以水泥基自修复材料修复效率为指标的F值分析表
Table 6. F value analysis table with repair efficiency of cement-based self-repairing materials as index
Factor Sums of squared deviations Degree of freedom Mean square F Clay curing agent (A) 1931.91 3 643.97 2.26 MgO expansion agent (B) 541.60 3 180.56 0.45 microcrystalline cellulose (C) 466.48 3 155.49 0.38 表 7 各因素对水泥基自修复材料修复效率作用的均值分析表
Table 7. Analysis of means table of the effects of various factors on the repair efficiency of cement-based self-repairing materials
Factor K1 j K2 j K3 j K4 j Clay curing agent (A) 117.250 106.200 91.450 90.925 MgO expansion agent (B) 106.550 95.050 107.925 97.425 microcrystalline cellulose (C) 99.800 93.775 103.750 108.500 -
[1] YOO K S, JANG S Y, LEE K-M. Recovery of chloride penetration resistance of cement-based composites due to self-healing of cracks[J]. Materials,2021,14(10):2501. doi: 10.3390/ma14102501 [2] XUE C, TAPAS M J, SIRIVIVATNANON V. Cracking and stimulated autogenous self-healing on the sustainability of cement-based materials: a review[J]. Journal of Sustainable Cement-Based Materials,2022:1-23. [3] ZHANG P, WITTMANN F H, VOGEL M, et al. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete[J]. Cement and Concrete Research,2017,100:60-67. doi: 10.1016/j.cemconres.2017.05.018 [4] WANG Y, CAO Y, ZHANG P, et al. Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze–thaw cycles[J]. Construction and Building Materials,2019,209:566-576. doi: 10.1016/j.conbuildmat.2019.03.091 [5] BAO J, LI S, ZHANG P, et al. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete[J]. Construction and Building Materials,2020,239:117845. doi: 10.1016/j.conbuildmat.2019.117845 [6] VAN TITTELBOOM K, DE BELIE N. Self-Healing in Cementitious Materials-A Review[J]. Materials,2013,6(6):2182-2217. doi: 10.3390/ma6062182 [7] HAGER M D, GREIL P, LEYENS C, et al. Self-Healing Materials[J]. Advanced Materials,2010,22(47):5424-30. doi: 10.1002/adma.201003036 [8] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement & Concrete Composites,2011,33(7):763-770. [9] Putri P M. Study of mortar creep with additional polymer materials for concrete repair[J]. Journal of Physics:Conference Series. IOP Publishing,2021,1912(1):012061. doi: 10.1088/1742-6596/1912/1/012061 [10] ZHAO X, DONG Q, CHEN X, et al. Meso-cracking characteristics of rubberized cement-stabilized aggregate by discrete element method[J]. Journal of Cleaner Production,2021,316:128374. doi: 10.1016/j.jclepro.2021.128374 [11] SHEN L A, YU W L, LI L, et al. Microorganism, Carriers, and Immobilization Methods of the Microbial Self-Healing Cement-Based Composites: A Review[J]. Materials,2021,14(17):5116. doi: 10.3390/ma14175116 [12] QIAN C X, ZHENG T W, RUI Y F. Living concrete with self-healing function on cracks attributed to inclusion of microorganisms: Theory, technology and engineering applications-A review[J]. Science China-Technological Sciences,2021,64(10):2067-2083. doi: 10.1007/s11431-021-1879-6 [13] ZHAN Q, ZHOU J, WANG S, et al. Crack self-healing of cement-based materials by microorganisms immobilized in expanded vermiculite[J]. Construction and Building Materials,2021,272:121610. doi: 10.1016/j.conbuildmat.2020.121610 [14] MA Y, ZHANG Y, LIU J, et al. GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating[J]. Materials & design,2020,189:108547. [15] LV L, YANG Z, CHEN G, et al. Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cementitious materials[J]. Construction & Building Materials,2016,105(Feb.15):487-495. [16] WANG X F, HAN R, HAN T L, et al. Determination of elastic properties of urea-formaldehyde microcapsules through nanoindentation based on the contact model and the shell deformation theory[J]. Materials Chemistry & Physics,2018,215:346-354. [17] MA Y, ZHANG Y, LIU J, et al. Preparation and Characterization of Ethylenediamine-Polyurea Microcapsule Epoxy Self-Healing Coating[J]. Materials,2020,13(2):326. doi: 10.3390/ma13020326 [18] HAN T L, WANG X F, LI D W, et al. Uniaxial deformation characteristics and mechanical model of microcapsule-based self-healing cementitious composite[J]. Construction and Building Materials,2021,274:121227. doi: 10.1016/j.conbuildmat.2020.121227 [19] ALGHAMRI R, KANELLOPOULOS A, LITINA C, et al. Preparation and polymeric encapsulation of powder mineral pellets for self-healing cement based materials[J]. Construction and Building Materials,2018,186(OCT.20):247-262. [20] GILFORD III J, HASSAN M M, RUPNOW T, et al. Dicyclopentadiene and sodium silicate microencapsulation for self-healing of concrete[J]. Journal of Materials in Civil Engineering,2014,26(5):886-896. doi: 10.1061/(ASCE)MT.1943-5533.0000892 [21] DONG B, WANG Y, FANG G, et al. Smart releasing behavior of a chemical selfhealing microcapsule in the stimulated concrete pore solution[J]. Cement and Concrete Composites,2015,56:46-50. doi: 10.1016/j.cemconcomp.2014.10.006 [22] JZ A, JIA Z A, BD B, et al. Preparation of metal hydroxide microcapsules and the effect on pH value of concrete[J]. Construction and Building Materials,2017,155:323-331. doi: 10.1016/j.conbuildmat.2017.07.155 [23] YMA B, JL A, YZ A, et al. Mechanical behavior and self-healing mechanism of polyurea-based double-walled microcapsule/epoxy composite films[J]. Progress in Organic Coatings,2021,157:106283. doi: 10.1016/j.porgcoat.2021.106283 [24] 刘加童, 葛亚杰, 吴睿, 等. 聚脲基双壁微胶囊型自修复涂层及其拉伸力学特性研究[J]. 涂料工业, 2020, 50(11):7.LIU Jiatong, GE Yajie, WU Rui, et al. Study on self-healing coating based on polyurea double-wall microcapsule and its tensile mechanical properties[J]. Coating industry,2020,50(11):7(in Chinese). [25] MA Y X, ZHANG Y R, LIU J T, et al. Self-Healing Epoxy Coating Modified by Double-Walled Microcapsules Based Polyurea for Metallic Protection[J]. Key Engineering Materials,2019:821. [26] 杨国坤, 蒋国盛, 刘天乐, 等. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2):2032-2038.Yang Guokun, Jiang Guosheng, Liu Tianle, et al. Preparation of temperature-controlled self-healing microcapsules and their application in cementing slurry in hydrate formation[J]. Materials Review,2021,35(2):2032-2038(in Chinese). [27] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(S2):1201-1205.Zhao Shangchuan, Li Xiaopeng, Wang Shaopeng. Research status and progress of concrete self-healing microcapsule wall materials[J]. Materials Review,2020,34(S2):1201-1205(in Chinese). [28] 朱康杰, 钱春香, 李敏, 等. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(S2):1212-1216.Zhu Kangjie, Qian Chunxiang, Li Min, et al. Effects of microcapsule repair agent size and dosage in microbial self-healing concrete on the release rate of repair agent[J]. Material Review,2020,34(S2):1212-1216(in Chinese). [29] 张仲, 吕晓仁, 于鹤龙, 等. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7):241-248.Zhang Zhong, Lv Xiaoren, Yu Helong, et al. Research progress of intelligent self-healing materials[J]. Materials Review,2022,36(7):241-248(in Chinese). [30] 段体岗, 黄国胜, 马力, 等. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10):777-783.Duan Tigang, Huang Guosheng, Ma Li, et al. Preparation and corrosion resistance of Q235/Ni-Co-based self-healing coating[J]. Materials Research Chinese Journal,2020,34(10):777-783(in Chinese). [31] LI Y, YU J Y, CAO Z L, et al. Preparation and application of novel microcapsules ruptured by microwave for self-healing concrete[J]. Construction and Building Materials,2021:304. [32] XIANG G F, TU J, XU H, et al. Preparation and Self-Healing Application of Isocyanate Prepolymer Microcapsules[J]. Coatings,2022,12(2):166. doi: 10.3390/coatings12020166 [33] 王信刚, 汪兴京, 夏龙, 等. 羰基铁粉改性环氧树脂/乙基纤维素微胶囊的吸波性能[J]. 材料研究学报, 2019, 33(11):824-830.Wang Xingang, Wang Xingjing, Xia Long, et al. Absorption properties of carbonyl iron powder modified epoxy resin/ethyl cellulose microcapsules[J]. Journal of Materials Research,2019,33(11):824-830(in Chinese). [34] Ye Q, Yu K, Zhang Z. Expansion of ordinary Portland cement paste varied with nano-MgO[J]. Construction and Building Materials,2015,78:189-193. doi: 10.1016/j.conbuildmat.2014.12.113 [35] Qureshi T, Kanellopoulos A, Al-Tabbaa A. Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing[J]. Construction and Building Materials,2018,192(DEC.20):768-784. [36] Abduljauwad S N. Improvement of plasticity and swelling potential of calcareous expansive clays[J]. Geotechnical Engineering,1995,26(1):3-16. [37] Keshawarz M S , Dutta U . STABILIZATION OF SOUTH TEXAS SOILS WITH FLY ASH[C]// Fly Ash for Soil Improvement. ASCE, 1993. [38] Sun D, Ma W, Ma J, et al. The synthesis of DMTDA microcapsules and investigation of self-healing cement paste through an isocyanate-amine system[J]. Cement and Concrete Composites,2021(9):104132. [39] Wang X, Chen Z, Xu W, et al. Fluorescence labelling and self-healing microcapsules for detection and repair of surface microcracks in cement matrix[J]. Composites,2020,184(Mar.1):107744.1-107744.10. [40] 马衍轩, 张颖锐, 雷欣, 等. 数字散斑相关方法的建筑力学分析应用研究进展[J]. 科技导报, 2017, 35(13):7.MA Yanxuan, ZHANG Yingrui, LEI Xin, et al. Research progress on application of digital speckle correlation method in architectural mechanics analysis[J]. Science and technology guide,2017,35(13):7(in Chinese). [41] CHEN Q, TIE Z X, HONG L, et al. Improved Search Algorithm of Digital Speckle Pattern Based on PSO and IC-GN//Photonics[J]. MDPI,2022,9(3):167. -

计量
- 文章访问数: 95
- HTML全文浏览量: 60
- 被引次数: 0