留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘土固化型微胶囊复合水泥基材料的设计与力学损伤自修复行为

马衍轩 吴睿 葛亚杰 黄昊 付双阳 张建

马衍轩, 吴睿, 葛亚杰, 等. 粘土固化型微胶囊复合水泥基材料的设计与力学损伤自修复行为[J]. 复合材料学报, 2023, 40(9): 5288-5301. doi: 10.13801/j.cnki.fhclxb.20230112.002
引用本文: 马衍轩, 吴睿, 葛亚杰, 等. 粘土固化型微胶囊复合水泥基材料的设计与力学损伤自修复行为[J]. 复合材料学报, 2023, 40(9): 5288-5301. doi: 10.13801/j.cnki.fhclxb.20230112.002
MA Yanxuan, WU Rui, GE Yajie, et al. Design and self-repair behavior of clay-cured microcapsule composite cementitious materials[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5288-5301. doi: 10.13801/j.cnki.fhclxb.20230112.002
Citation: MA Yanxuan, WU Rui, GE Yajie, et al. Design and self-repair behavior of clay-cured microcapsule composite cementitious materials[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5288-5301. doi: 10.13801/j.cnki.fhclxb.20230112.002

粘土固化型微胶囊复合水泥基材料的设计与力学损伤自修复行为

doi: 10.13801/j.cnki.fhclxb.20230112.002
基金项目: 山东省自然科学基金项目(ZR2022 ME121);青岛西海岸新区2020 年科技计划专项项目(2020-38);海洋环境混凝土技术教育部工程研究中心开放课题(TMduracon2022010);中国水利水电科学研究院流域水循环模拟与调控国家重点实验室开放研究基金项目(IWHR-SKL-202106);国家自然科学基金(51408330)
详细信息
    通讯作者:

    马衍轩,博士,副教授,硕士生导师,研究方向为防灾减灾建筑材料与技术 E-mail: yxma@qut.edu.cn

  • 中图分类号: TB332

Design and self-repair behavior of clay-cured microcapsule composite cementitious materials

Funds: Shandong Provincial Natural Science Foundation (ZR2022 ME121); Special Project of Science and Technology Plan in 2020 of Qingdao West Coast New Area, China (2020-38); Open Research Fund of Engineering Research Center of Concrete Technology under Marine Environment, Ministry of Education (TMduracon2022010); Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin (China Institute of Water Resources and Hydropower Research) (IWHR-SKL-202106); National Natural Science Foundation of China Project (51408330)
  • 摘要: 采用圆锅造粒法,通过对微胶囊工艺与配方参数进行设计和优化,制备了以粘土固化剂、膨润土、MgO膨胀剂和微晶纤维素为芯材,以乙基纤维素(EC)为壁材的微胶囊,采用正交试验探索了微胶囊芯材组分对自修复微胶囊/水泥基复合材料自修复效果的影响并确定了微胶囊芯材的最佳组成为:粘土固化剂为10wt%、MgO膨胀剂为35wt%、微晶纤维素为6wt%,膨润土为49wt%。研究结果表明,随着微胶囊掺量的增加,自修复水泥基材料的抗压强度降低,当微胶囊掺量(占水泥质量)为3%时,自修复微胶囊/水泥基复合材料的抗压强度相较于空白组仅下降了4%且具有较高的强度恢复率为103.8%。通过数字散斑相关方法(DSCM)对加载过程中的自修复微胶囊/水泥基复合材料的变形行为进行了追踪测试。从应力-应变曲线、应变场分布、灰度相关系数特征值(Stc)和应变特征值(Sts)之间的变化规律,得出自修复微胶囊/水泥基复合材料的自修复机制,基于微胶囊破裂时产生了与水泥基同源物质钙钒石(AFt)和Mg(OH)2对裂纹进行填补,限制裂纹发展,达到修复裂纹的目的。

     

  • 图  1  微胶囊修复机制示意图

    Figure  1.  Diagram of microcapsule repair mechanis

    AFt—Calciovanadite

    图  2  不同转速下粒径为0.1~1.0 mm的微胶囊的产率分布

    Figure  2.  Yield distribution of particle size from 0.1-1.0 mm microcapsules at different rotational speeds

    图  3  不同乙基纤维素(EC)溶液掺量下粒径为0.1~1.0 mm的微胶囊的产率分布

    Figure  3.  Yield distribution of particle size from 0.1-1.0 mm microcapsules under different ethyl cellulose (EC) solution contents

    图  4  不同EC溶液浓度下粒径为0.1~1.0 mm的微胶囊的产率分布

    Figure  4.  Yield distribution of particle size from 0.1-1.0 mm microcapsules under different EC solution concentrations

    图  5  纯EC和微胶囊的FTIR图谱

    Figure  5.  FTIR spectra of EC and microcapsules

    图  6  0.1~0.2 mm范围内微胶囊的粒径分布 (a)、长径比 (b) 和圆形度 (c)

    Figure  6.  Particle size distribution (a), aspect ratio (b) and circularity (c) of microcapsules in the range of 0.1-0.2 mm

    图  7  微胶囊的微观形貌

    Figure  7.  Micro-morphology of microcapsules

    图  8  不同掺量微胶囊/水泥基复合材料断面微观形貌:((a1), (a2)) 0%;((b1), (b2)) 3%

    Figure  8.  Micro-morphologies of cross-sections of microcapsules/cementitious composites with different dosages: ((a1), (a2)) 0%; ((b1), (b2)) 3%

    图  9  微胶囊、水泥基体和微胶囊/水泥基复合材料的XRD图谱

    Figure  9.  XRD patterns of microcapsules, cementitious substrates and microcapsules/cementitious composites

    图  10  微胶囊/水泥基复合材料的化学组成

    Figure  10.  Chemical composition of the microcapsule/cementitious composites

    图  11  不同掺量的微胶囊在水泥基体中的分散状态:(a) 0%;(b) 3%;(c) 6%;(d) 9%

    Figure  11.  Dispersion state of different microcapsule dosages in cement matrix: (a) 0%; (b) 3%; (c) 6%; (d) 9%

    图  12  不同微胶囊掺量的自修复水泥基复合材料的抗压强度

    Figure  12.  Compressive strength of self-healing cement-based composites with different microcapsule contents

    图  13  微胶囊/水泥基复合材料的强度恢复率

    Figure  13.  Strength recovery rate of microcapsule/cementitious composites

    图  14  空白组样品修复后的应力-应变、灰度相关系数特征值Stc和X 方向应变特征值Sts的关系曲线

    Figure  14.  Relationship curves of stress-strain, gray correlation coefficient characteristic value Stc and Characteristic value of strain in X direction Sts of blank group samples after repair

    图  15  不同微胶囊掺量的水泥基自修复材料 样品预压至60%极限抗弯应力(σmax)(左)和在大气环境下修复后加载至60% σmax(右)X方向的应变场:((a), (b)) 0%;((c), (d)) 3%

    Figure  15.  Samples of cement-based self-repairing materials with different content of microcapsules were pre-pressed to 60% σmax (left) and the strain field loaded to 60% maximum bending stress (σmax)(right) X direction after repair in atmospheric environment: ((a), (b)) 0%; ((c), (d)) 3%

    图  16  含3%微胶囊的水泥基自修复材料样品修复后的应力-应变、StcSts的关系曲线

    Figure  16.  Relationship curves of stress-strain, Stc and Sts of cement-based self-healing materials containing 3% microcapsules after repair

    表  1  微胶囊固料配合比

    Table  1.   Solid material mix ratio of microcapsules

    Clay curing agent/wt%MgO expansion agent/wt%Microcrystalline cellulose/wt%Bentonite/
    wt%
    1035649
    下载: 导出CSV

    表  2  微胶囊组分三因素四水平正交试验设计表

    Table  2.   Three-factors and four-levels orthogonal experimental design of microcapsule components


    No.
    ABCD
    Clay curing agent/wt%MgO expansion agent/wt%Microcrystalline
    cellulose/wt%
    Bentonite/wt%
    1(A1B1C1) 5 5 2 88
    2(A1B2C2) 5 15 4 76
    3(A1B3C3) 5 25 6 64
    4(A1B4C4) 5 35 8 52
    5(A2B1C2) 10 5 4 81
    6(A2B2C1) 10 15 2 73
    7(A2B3C4) 10 25 8 57
    8(A2B4C3) 10 35 6 49
    9(A3B1C3) 15 5 6 74
    10(A3B2C4) 15 15 8 62
    11(A3B3C1) 15 25 2 58
    12(A3B4C2) 15 35 4 46
    13(A4B1C4) 20 5 8 67
    14(A4B2C3) 20 15 6 59
    15(A4B3C2) 20 25 4 51
    16(A4B4C1) 20 35 2 43
    下载: 导出CSV

    表  3  微胶囊囊芯组分对自修复微胶囊/水泥基复合材料的抗压强度和强度恢复率的影响正交试验结果

    Table  3.   Effects of microcapsule core components on compressive strength and strength recovery rate of self-healing microcapsule/cement-based composites: Orthogonal test results

    No.Compressive strength
    /MPa
    Repair strength
    /MPa
    Repair efficiency
    /%
    1(A1B1C1) 52.2 58.7 112.5
    2(A1B2C2) 45.4 56.3 124.0
    3(A1B3C3) 52.6 58.6 111.4
    4(A1B4C4) 61.4 77.6 121.1
    5(A2B1C2) 73.4 76.8 104.7
    6(A2B2C1) 68.3 57.7 84.4
    7(A2B3C4) 55.6 73.3 131.9
    8(A2B4C3) 76.4 79.3 103.8
    9(A3B1C3) 62.2 73.5 118.2
    10(A3B2C4) 69.3 62.5 90.2
    11(A3B3C1) 67.2 67.0 99.7
    12(A3B4C2) 59.4 34.3 57.7
    13(A4B1C4) 62.9 57.1 90.8
    14(A4B2C3) 68.6 56.0 81.6
    15(A4B3C2) 72.7 64.5 88.7
    16(A4B4C1) 68.2 70.0 102.6
    下载: 导出CSV

    表  4  以水泥基自修复材料抗压强度为指标的方差统计F值分析表

    Table  4.   Statistics of variance F value analysis table with compressive strength of cement-based self-repairing materials as index

    FactorSums of squared deviationsDegree of freedomMean
    square
    F
    A 635.30 3 211.77 5.17
    B 45.35 3 15.12 0.17
    C 17.47 3 5.82 0.06
    下载: 导出CSV

    表  5  各因素对水泥基自修复材料抗压强度作用的均值分析表

    Table  5.   Analysis of the mean value of each factor against compressive strength

    FactorK1jK2jK3jK4j
    A52.90068.42564.52568.100
    B62.67562.90062.02566.350
    C63.97562.72564.95062.300
    Note: Kij—The ith average value of factor j.
    下载: 导出CSV

    表  6  以水泥基自修复材料修复效率为指标的F值分析表

    Table  6.   F value analysis table with repair efficiency of cement-based self-repairing materials as index

    FactorSums of squared deviationsDegree of freedomMean
    square
    F
    A 1931.91 3 643.97 2.26
    B 541.60 3 180.56 0.45
    C 466.48 3 155.49 0.38
    下载: 导出CSV

    表  7  各因素对水泥基自修复材料修复效率作用的均值分析表

    Table  7.   Analysis of means table of the effects of various factors on the repair efficiency of cement-based self-repairing materials

    FactorK1jK2jK3jK4j
    A 117.250 106.200 91.450 90.925
    B 106.550 95.050 107.925 97.425
    C 99.800 93.775 103.750 108.500
    下载: 导出CSV
  • [1] YOO K S, JANG S Y, LEE K M. Recovery of chloride penetration resistance of cement-based composites due to self-healing of cracks[J]. Materials,2021,14(10):2501. doi: 10.3390/ma14102501
    [2] XUE C H, TAPAS M J, SIRIVIVATNANON V. Cracking and stimulated autogenous self-healing on the sustainability of cement-based materials: A review[J]. Journal of Sustainable Cement-Based Materials,2023,12(2):184-206.
    [3] ZHANG P, WITTMANN F H, VOGEL M, et al. Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete[J]. Cement and Concrete Research,2017,100:60-67. doi: 10.1016/j.cemconres.2017.05.018
    [4] WANG Y R, CAO Y B, ZHANG P, et al. Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze-thaw cycles[J]. Construction and Building Materials,2019,209:566-576. doi: 10.1016/j.conbuildmat.2019.03.091
    [5] BAO J W, LI S G, ZHANG P, et al. Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete[J]. Construction and Building Materials,2020,239:117845. doi: 10.1016/j.conbuildmat.2019.117845
    [6] VAN TITTELBOOM K, DE BELIE N. Self-healing in cementitious materials—A review[J]. Materials,2013,6(6):2182-2217. doi: 10.3390/ma6062182
    [7] HAGER M D, GREIL P, LEYENS C, et al. Self-healing materials[J]. Advanced Materials,2010,22(47):5424-5430. doi: 10.1002/adma.201003036
    [8] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites,2011,33(7):763-770.
    [9] PUTRI P M. Study of mortar creep with additional polymer materials for concrete repair[J]. Journal of Physics: Conference Series,2021,1912(1):012061. doi: 10.1088/1742-6596/1912/1/012061
    [10] ZHAO X K, DONG Q, CHEN X Q, et al. Meso-cracking characteristics of rubberized cement-stabilized aggregate by discrete element method[J]. Journal of Cleaner Production,2021,316:128374. doi: 10.1016/j.jclepro.2021.128374
    [11] SHEN L A, YU W L, LI L, et al. Microorganism, carriers, and immobilization methods of the microbial self-healing cement-based composites: A review[J]. Materials,2021,14(17):5116. doi: 10.3390/ma14175116
    [12] QIAN C X, ZHENG T W, RUI Y F. Living concrete with self-healing function on cracks attributed to inclusion of microorganisms: Theory, technology and engineering applications—A review[J]. Science China-Technological Sciences,2021,64(10):2067-2083. doi: 10.1007/s11431-021-1879-6
    [13] ZHAN Q, ZHOU J, WANG S, et al. Crack self-healing of cement-based materials by microorganisms immobilized in expanded vermiculite[J]. Construction and Building Materials,2021,272:121610. doi: 10.1016/j.conbuildmat.2020.121610
    [14] MA Y X, ZHANG Y R, LIU J T, et al. GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating[J]. Materials & Design,2020,189:108547.
    [15] LYU L, YANG Z, CHEN G, et al. Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cementitious materials[J]. Construction and Building Materials,2016,105:487-495.
    [16] WANG X F, HAN R, HAN T L, et al. Determination of elastic properties of urea-formaldehyde microcapsules through nanoindentation based on the contact model and the shell deformation theory[J]. Materials Chemistry and Physics,2018,215:346-354.
    [17] MA Y X, ZHANG Y R, LIU J T, et al. Preparation and characterization of ethylenediamine-polyurea microcapsule epoxy self-healing coating[J]. Materials,2020,13(2):326. doi: 10.3390/ma13020326
    [18] HAN T L, WANG X F, LI D W, et al. Uniaxial deformation characteristics and mechanical model of microcapsule-based self-healing cementitious composite[J]. Construction and Building Materials,2021,274:121227. doi: 10.1016/j.conbuildmat.2020.121227
    [19] ALGHAMRI R, KANELLOPOULOS A, LITINA C, et al. Preparation and polymeric encapsulation of powder mineral pellets for self-healing cement based materials[J]. Construction and Building Materials,2018,186:247-262.
    [20] GILFORD III J, HASSAN M M, RUPNOW T, et al. Dicyclopentadiene and sodium silicate microencapsulation for self-healing of concrete[J]. Journal of Materials in Civil Engineering,2014,26(5):886-896. doi: 10.1061/(ASCE)MT.1943-5533.0000892
    [21] DONG B Q, WANG Y S, FANG G H, et al. Smart releasing behavior of a chemical self-healing microcapsule in the stimulated concrete pore solution[J]. Cement and Concrete Composites,2015,56:46-50. doi: 10.1016/j.cemconcomp.2014.10.006
    [22] ZUO J D, ZHAN J, DONG B Q, et al. Preparation of metal hydroxide microcapsules and the effect on pH value of concrete[J]. Construction and Building Materials,2017,155:323-331. doi: 10.1016/j.conbuildmat.2017.07.155
    [23] MA Y X, LIU J T, ZHANG Y R, et al. Mechanical behavior and self-healing mechanism of polyurea-based double-walled microcapsule/epoxy composite films[J]. Progress in Organic Coatings,2021,157:106283. doi: 10.1016/j.porgcoat.2021.106283
    [24] 刘加童, 葛亚杰, 吴睿, 等. 聚脲基双壁微胶囊型自修复涂层及其拉伸力学特性研究[J]. 涂料工业, 2020, 50(11):9-15.

    LIU Jiatong, GE Yajie, WU Rui, et al. Study on self-healing coatings based on double-walled polyurea microcapsules and its tensile properties[J]. Paint & Coatings Industry,2020,50(11):9-15(in Chinese).
    [25] MA Y X, ZHANG Y R, LIU J T, et al. Self-healing epoxy coating modified by double-walled microcapsules based polyurea for metallic protection[J]. Key Engineering Materials,2019,821:313-320.
    [26] 杨国坤, 蒋国盛, 刘天乐, 等. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2):2032-2038.

    YANG Guokun, JIANG Guosheng, LIU Tianle, et al. Analysis on preparation of temperature controlled self-repairing microcapsules and its application in cement slurry for hydrate formation[J]. Materials Reports,2021,35(2):2032-2038(in Chinese).
    [27] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(S2):1201-1205.

    ZHAO Shangchuan, LI Xiaopeng, WANG Shaopeng. Research status and progress of concrete self-healing microcapsule wall material[J]. Materials Reports,2020,34(S2):1201-1205(in Chinese).
    [28] 朱康杰, 钱春香, 李敏, 等. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(S2):1212-1216.

    ZHU Kangjie, QIAN Chunxiang, LI Min, et al. Effect of the size and dosage of microcapsule healing agent on the release rate of healing agent in microbial self-healing concrete[J]. Materials Reports,2020,34(S2):1212-1216(in Chinese).
    [29] 张仲, 吕晓仁, 于鹤龙, 等. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7):241-248.

    ZHANG Zhong, LYU Xiaoren, YU Helong, et al. Research progress of intelligent self-healing materials[J]. Materials Reports,2022,36(7):241-248(in Chinese).
    [30] 段体岗, 黄国胜, 马力, 等. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10):777-783.

    DUAN Tigang, HUANG Guosheng, MA Li, et al. Construction and anti-corrosion performance of a selfhealing coating on Ni-Co plating/Q235 carbon steel[J]. Chinese Journal of Materials Research,2020,34(10):777-783(in Chinese).
    [31] LI Y, YU J Y, CAO Z L, et al. Preparation and application of novel microcapsules ruptured by microwave for self-healing concrete[J]. Construction and Building Materials,2021,304:124616.
    [32] XIANG G F, TU J, XU H, et al. Preparation and self-healing application of isocyanate prepolymer microcapsules[J]. Coatings,2022,12(2):166. doi: 10.3390/coatings12020166
    [33] 王信刚, 汪兴京, 夏龙, 等. 羰基铁粉改性环氧树脂/乙基纤维素微胶囊的吸波性能[J]. 材料研究学报, 2019, 33(11):824-830.

    WANG Xin'gang, WANG Xingjing, XIA Long, et al. Wave-absorption properties of epoxy/ethyl cellulose microcapsule modified by carbonyl iron powder[J]. Chinese Journal of Materials Research,2019,33(11):824-830(in Chinese).
    [34] YE Q, YU K, ZHANG Z. Expansion of ordinary Portland cement paste varied with nano-MgO[J]. Construction and Building Materials,2015,78:189-193. doi: 10.1016/j.conbuildmat.2014.12.113
    [35] QURESHI T, KANELLOPOULOS A, AL-TABBAA A. Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing[J]. Construction and Building Materials,2018,192:768-784.
    [36] ABDULJAUWAD S N. Improvement of plasticity and swelling potential of calcareous expansive clays[J]. Geotechnical Engineering,1995,26(1):3-16.
    [37] KESHAWARZ M S, DUTTA U. Stabilization of south texas soils with fly ash[C]//Fly Ash for Soil Improvement. ASCE geotechnical special publication No. 36: American Society of Civil Engineers, 1993: 30-42.
    [38] SUN D W, MA W X, MA J K, et al. The synthesis of DMTDA microcapsules and investigation of self-healing cement paste through an isocyanate-amine system[J]. Cement and Concrete Composites,2021,122(9):104132.
    [39] WANG X G, CHEN Z F, XU W, et al. Fluorescence labelling and self-healing microcapsules for detection and repair of surface microcracks in cement matrix[J]. Composites Part B: Engineering,2020,184:107744.
    [40] 马衍轩, 张颖锐, 雷欣, 等. 数字散斑相关方法的建筑力学分析应用研究进展[J]. 科技导报, 2017, 35(13):77-83.

    MA Yanxuan, ZHANG Yingrui, LEI Xin, et al. Application research progress of digital speckle correlation method in architectural mechanics analysis: A review[J]. Science and Technology Review,2017,35(13):77-83(in Chinese).
    [41] CHEN Q A, TIE Z X, HONG L A, et al. Improved search algorithm of digital speckle pattern based on PSO and IC-GN[J]. Photonics,2022,9(3):167.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  189
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2022-12-09
  • 录用日期:  2023-01-01
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回