留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于皮秒激光7075 Al合金超疏水表面的制备及其工艺优化

孙晓雨 孙树峰 王海涛 王津 刘世光 王萍萍

孙晓雨, 孙树峰, 王海涛, 等. 基于皮秒激光7075 Al合金超疏水表面的制备及其工艺优化[J]. 复合材料学报, 2023, 40(6): 3587-3597
引用本文: 孙晓雨, 孙树峰, 王海涛, 等. 基于皮秒激光7075 Al合金超疏水表面的制备及其工艺优化[J]. 复合材料学报, 2023, 40(6): 3587-3597
SUN Xiaoyu, SUN Shufeng, WANG Haitao, WANG Jin, LIU Shiguang, WANG Pingping. Preparation and process optimization of superhydrophobic surface on 7075 Al alloy based on picosecond laser[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3587-3597.
Citation: SUN Xiaoyu, SUN Shufeng, WANG Haitao, WANG Jin, LIU Shiguang, WANG Pingping. Preparation and process optimization of superhydrophobic surface on 7075 Al alloy based on picosecond laser[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3587-3597.

基于皮秒激光7075 Al合金超疏水表面的制备及其工艺优化

基金项目: 国家自然科学基金(51775289);高等学校学科创新引智计划(D21017);山东省重点研发计划项目(2019 GGX104097);青岛西海岸新区2020年度科技源头创新专项资助项目(2020-103)
详细信息
    通讯作者:

    孙树峰,博士,教授,博士生导师,研究方向为激光精密微纳制造 E-mail: shufeng2001@163.com

  • 中图分类号: TN249

Preparation and process optimization of superhydrophobic surface on 7075 Al alloy based on picosecond laser

Funds: National Natural Science Foundation of China (51775289); The 111 project (D21017); Shandong Key R&D Program (2019 GGX104097); Origin Innovation Project of Qingdao West Coast New Area (2020-103)
  • 摘要: 为在Al合金表面获得稳定的超疏水性能,进一步拓宽Al合金材料在工业领域的应用范围,研究了一种简单、灵活、可靠的超疏水表面制备方法。首先,基于超疏水表面结构特征,采用单因素控制变量法和响应面法对激光加工参数进行了选取和优化。后采用皮秒激光刻蚀和硬脂酸处理相结合的方式获得了(超)疏水表面。通过控制激光扫描间距间接操控表面形貌的方式研究了微纳结构对表面润湿性的影响。利用接触角测量仪、SEM、共聚焦显微镜、FTIR等分析了样品的表面润湿性、形貌及化学成分。结果表明:最佳激光刻蚀参数为:扫描次数2次,扫描速度460 mm/s,频率835 kHz,平均功率21 W;扫描间距为20~80 μm的表面具有超疏水性,扫描间距为100~160 μm的表面具有疏水性。当扫描间距为20、80 μm时,接触角最大为154°,且表面黏附性很低。本文对在金属表面快速获得稳定超疏水性具有指导意义。

     

  • 图  1  气液界面受力分析示意图

    Figure  1.  Schematic diagram of force analysis on gas-liquid interface

    Pd—Total downward force; Pu—Total upward force

    图  2  皮秒激光微加工系统示意图

    Figure  2.  Schematic diagram of the picosecond laser micro-machining system

    M1, M2—Reflecting mirror; F—Focal length; θ—Angle; d—Scan spacing; CCD—Camera system

    图  3  7075 Al合金基体上未处理表面 (a)、激光和硬脂酸处理表面 (b) 的接触角

    Figure  3.  Contact angle of untreated surface (a), laser and stearic acid treated surface (b) on 7075 Al alloy substrate

    图  4  激光和硬脂酸处理后7075 Al合金表面粗糙度与激光扫描间距之间的关系图

    Figure  4.  Relationship between surface roughness of 7075 Al alloy and laser scanning spacing after laser and stearic acid treatment

    图  5  激光和硬脂酸处理后7075 Al合金表面接触角与激光扫描间距的关系图

    Figure  5.  Relationship between surface contact angle of 7075 Al alloy and laser scanning spacing after laser and stearic acid treatment

    图  6  水滴(5 μL)与7075 Al合金表面接触过程图像

    Figure  6.  Image of water droplets (5 μL) in contact with 7075 Al alloy surface

    图  7  不同扫描间距7075 Al合金表面的扫描电镜图及局部放大图

    Figure  7.  SEM and partial enlargement images of 7075 Al alloy surface at different scanning intervals

    图  8  不同扫描间距7075 Al合金表面的三维形貌图 ((a), (b)) 和平均轮廓图 ((c), (d))

    Figure  8.  3D morphologies ((a), (b)) and average contour ((c), (d)) of 7075 Al alloy surface with different scan spacing

    图  9  7075 Al合金表面的自组装单分子膜

    Figure  9.  Self-assembled monolayer on 7075 Al alloy surface

    图  10  改性前后7075 Al合金表面的FTIR图谱

    Figure  10.  FTIR spectra of 7075 Al alloy surface before and after modification

    图  11  7075 Al合金表面接触角与磨损周期之间的关系图

    Figure  11.  Relationship between surface contact angle of 7075 Al alloy and abrasion cycles

    表  1  7075 Al合金成分表

    Table  1.   Chemical composition of 7075 Al alloy

    ElementSiFeCuMnMgCrZnTiAl
    Mass fraction/wt%≤0.4≤0.51.2-2.0≤0.32.1-2.90.18-0.285.1-6.1≤0.2Bal
    下载: 导出CSV

    表  2  单因素控制变量法试验方案

    Table  2.   Test scheme of single factor control variable method

    A/nB/(mm·s−1)C/μmD/kHzE/W
    11-8500450021
    24200-900450021
    345000-1450021
    445004200-90021
    5450045009-30
    Notes: A—Number of scanning; B—Scanning speed; C—Feed distance; D—Laser frequency; E—Average power.
    下载: 导出CSV

    表  3  因素水平表

    Table  3.   Factor levels table

    FactorsFactor levels
    Low value (−1)Median value (0)High value (1)
    A/n234
    B/(mm·s−1)400500600
    C/μm048
    D/kHz700800900
    E/W212427
    下载: 导出CSV

    表  4  正交试验方案及结果

    Table  4.   Scheme and results of orthogonal test

    Experimental groupA/nB/mm·s−1C/μmD/kHzE/WL/μmD/μm
    13500070024107.386.23
    23500480024102.175.65
    33600880024101.315.99
    4450088002497.887.51
    54400480024107.458.33
    63500480024103.037.54
    73400080024104.167.85
    83500080027104.077.74
    9250048002196.585.29
    103500470021106.317.55
    11350049002797.407.06
    12350008002199.286.55
    133500880027104.047.48
    143600480027101.456.45
    153400880024100.736.80
    163500480024103.927.29
    17340048002799.117.54
    183600490024102.236.58
    194500480021105.667.54
    20350049002195.656.60
    21350048002499.026.89
    223500870024104.067.25
    234500080024101.418.49
    243400470024106.748.11
    25250049002494.545.62
    26250088002497.245.71
    274600480024103.497.51
    282500470024106.906.16
    294500480027102.237.89
    303500470027105.726.88
    313500880021100.146.25
    32350048002496.106.64
    33360008002499.166.03
    343600470024103.166.59
    35350048002499.926.36
    364500470024109.188.16
    373400480021100.146.82
    38360048002199.546.19
    39340049002498.526.83
    40250048002796.624.38
    41260048002494.094.83
    42350009002496.226.60
    43350089002494.535.60
    44250008002495.605.21
    45240048002496.825.52
    46450049002498.648.28
    Notes: L—Width; D—Depth.
    下载: 导出CSV

    表  5  微槽宽度和深度二次多项式模型的方差分析(ANOVA)

    Table  5.   Analysis of variance (ANOVA) of quadratic polynomial model for the depth and width of the microgroove

    SourceSum of squaresdfMean squareF-valueP-value
    WidthModel 1539.032026.953.850.0009Significant
    Residual175.07257.00
    Lack of fit132.56206.630.77960.6898Not significant
    Pure error42.5158.50
    Cor total714.1045
    DepthModel 236.48201.827.06<0.0001Significant
    Residual6.46250.2584
    Lack of fit4.15200.20750.44930.9082Not significant
    Pure error2.3150.4618
    Cor total42.9445
    下载: 导出CSV

    表  6  试验与预测结果对比表

    Table  6.   Comparison table of experimental and predicted results

    No.Width/μmRelative error rate/%Depth/μmRelative error rate/%
    The test resultsPredictive valueThe test resultsPredictive value
    193.8593.390.495.305.391.67
    296.263.075.154.45
    392.431.035.125.00
    下载: 导出CSV
  • [1] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences,2001,37(8):669-767. doi: 10.1016/S0376-0421(01)00018-5
    [2] GAO X B. Condensation and subsequent freezing delays as a result of using femtosecond laser functionalized surfaces[J]. Journal of Laser Applications,2018,30(1):011501. doi: 10.2351/1.4986058
    [3] 徐达, 肖振, 余新泉, 等. 多功能疏水/超疏水复合涂层的制备及其防覆冰性[J]. 复合材料学报, 2022, 39(3):1102-1109. doi: 10.13801/j.cnki.fhclxb.20210513.004

    XU D, XIAO Z, YU X Q, et al. Preparation and anti-icing characteristics of multifunctional hydrophobic/superhydrophobic composite coating[J]. Acta Materiae Compositae Sinica,2022,39(3):1102-1109(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210513.004
    [4] YUAN G, LIU Y W, NGO C V, et al. Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing[J]. Optics Express,2020,28(24):35636-35650. doi: 10.1364/OE.400804
    [5] MAURER J A, MILLER M J, BARTOLUCCI S F. Self-cleaning superhydrophobic nanocomposite surfaces generated by laser pulse heating[J]. Journal of Colloid & Interface Science,2018,524:204-208.
    [6] WANG M, GU X H, MA P S, et al. Microstructured superhydrophobic anti-reflection films for performance improvement of photovoltaic devices[J]. Materials Research Bulletin,2017,91:208-213. doi: 10.1016/j.materresbull.2017.03.019
    [7] YIN Y S, LIU T, CHEN S G, et al. Structure stability and corrosion inhibition of super-hydrophobic film on aluminum in seawater[J]. Applied Surface Science,2008,255(5):2978-2984. doi: 10.1016/j.apsusc.2008.08.088
    [8] FAN Q H, JI X, LAN Q, et al. An anti-icing copper-based superhydrophobic layer prepared by one-step electrodeposition in both cathode and anode[J]. Colloids & Surfaces A: Physicochemical and Engineering Aspects,2022:637.
    [9] WU Y L, WANG Z D, YANG J Y, et al. Designing superhydrophobic robotic surfaces: Self-cleaning, high-grip impact, and bacterial repelling[J]. Colloids & Surfaces A Physicochemical and Engineering Aspects,2021:629.
    [10] LIU S H, LIU X J, LATTHE S S, et al. Self-cleaning transparent superhydrophobic coatings through simple sol-gel processing of fluoroalkylsilane[J]. Applied Surface Science,2015,351:897-903. doi: 10.1016/j.apsusc.2015.06.016
    [11] QI Y, CUI Z, LIANG B, et al. A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching[J]. Applied Surface Science,2014,305(1):716-724.
    [12] CHOI H J, SHIN J H, CHOO S, et al. Fabrication of superhydrophobic and oleophobic Al surfaces by chemical etching and surface fluorination[J]. Thin Solid Films,2015,585:76-80. doi: 10.1016/j.tsf.2015.03.046
    [13] JISR R M, SCHLENOFF J B, RMAILE H H. Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes[J]. Angewandte Chemie International Edition,2005,44(5):782-785. doi: 10.1002/anie.200461645
    [14] LI K K, YAO W, XIE Y X, et al. A strongly hydrophobic and serum-repelling surface composed of CrN films deposited on laser-patterned microstructures that was optimized with an orthogonal experiment[J]. Surface & Coatings Technology,2020,391:125708.
    [15] SUN K, YANG H, XUE W, et al. Tunable bubble assembling on a hybrid superhydrophobic-philic surface fabricated by selective laser texturing[J]. Langmuir,2018,34(44):13203-13209. doi: 10.1021/acs.langmuir.8b02879
    [16] XING W, LI Z, YANG H O, et al. Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser[J]. Materials & Design,2019,183:108156.
    [17] ZHANG Z B, HUA Y Q, YE Y X, et al. Fabrication of superhydrophobic nickel-aluminum bronze alloy surfaces based on picosecond laser pulses[J]. Chinese Journal of Lasers,2019,46(3):0302013. doi: 10.3788/CJL201946.0302013
    [18] GUO X L, GUO Z G. Superhydrophobic plant leaves with micro-line structures: An optimal biomimetic objective in bionic engineering[J]. Journal of Bionic Engineering,2018,15(5):851-858. doi: 10.1007/s42235-018-0072-2
    [19] BARTHLOTT W, MAIL M, BHUSHAN B, et al. Plant surfaces: Structures and functions for biomimetic innovations[J]. Nano-Micro Letters,2017,9(2):116-155.
    [20] YANG Z, LIU X P, TIAN Y L. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J]. Journal of Colloid & Interface Science,2019,533:268-277. doi: 10.1016/j.jcis.2018.08.082
    [21] LONG J Y, ZHONG M L, ZHANG H J, et al. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J]. Journal of Colloid & Interface Science,2015,441:1-9.
    [22] JAGDHEESH R, DIAZ M, MARIMUTHU S, et al. Robust fabrication of μ-patterns with tunable and durable wetting properties: hydrophilic to ultrahydrophobic via a vacuum process[J]. Journal of Materials Chemistry A,2017,5(15):7125-7136. doi: 10.1039/C7TA01385J
    [23] 杨统林, 赵中华, 肖建军, 等. 硬脂酸改性纳米氧化铝的工艺[J]. 南昌大学学报(工科版), 2018, 40(1):8-12. doi: 10.13764/j.cnki.ncdg.2018.01.002

    YANG T L, ZHAO Z H, XIAO J J, et al. Surface modification process of nano-Al2O3 with stearic acid[J]. Journal of Nanchang University,2018,40(1):8-12(in Chinese). doi: 10.13764/j.cnki.ncdg.2018.01.002
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  163
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-07-04
  • 录用日期:  2022-07-19
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回