留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能

叶喜葱 高琦 何恩义 杨超 欧阳宾 杨鹏 吴海华

叶喜葱, 高琦, 何恩义, 等. 熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能[J]. 复合材料学报, 2023, 40(5): 2759-2771. doi: 10.13801/j.cnki.fhclxb.20220727.002
引用本文: 叶喜葱, 高琦, 何恩义, 等. 熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能[J]. 复合材料学报, 2023, 40(5): 2759-2771. doi: 10.13801/j.cnki.fhclxb.20220727.002
YE Xicong, GAO Qi, HE Enyi, et al. Mechanical and microwave absorbing properties of Mn-Zn ferrite/polylactic acid composites formed by fused deposition modeling[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2759-2771. doi: 10.13801/j.cnki.fhclxb.20220727.002
Citation: YE Xicong, GAO Qi, HE Enyi, et al. Mechanical and microwave absorbing properties of Mn-Zn ferrite/polylactic acid composites formed by fused deposition modeling[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2759-2771. doi: 10.13801/j.cnki.fhclxb.20220727.002

熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能

doi: 10.13801/j.cnki.fhclxb.20220727.002
基金项目: 国家自然科学基金(51575313);三峡大学石墨增材制造技术与装备湖北省工程研究中心(HRCGAM202101)
详细信息
    通讯作者:

    何恩义,博士,讲师,硕士生导师,研究方向为吸波材料与器件 E-mail:heenyi@ctgu.edu.cn

  • 中图分类号: TB333

Mechanical and microwave absorbing properties of Mn-Zn ferrite/polylactic acid composites formed by fused deposition modeling

Funds: National Natural Science Foundation of China (51575313); Hubei Engineering Research Center of Graphite Additive Manufacturing Technology and Equipment of China Three Gorges University (HRCGAM202101)
  • 摘要: 3D打印技术在快速制造复杂形状零件方面获得了越来越多的关注。将锰锌铁氧体(MZF)作为增强体填充到聚乳酸(PLA)中,通过球磨混合和熔融挤出法制备出MZF/PLA复合线材,利用熔融沉积成形(FDM)制备出MZF/PLA复合材料。采用XRD、 SEM和矢量网络分析仪对不同复合比例的MZF/PLA复合材料的微观形貌、力学性能和电磁性能进行表征,并计算不同厚度的反射损耗,研究MZF的含量对复合材料吸波性能的影响。结果表明:当MZF含量为10wt%时,MZF/PLA复合材料的拉伸强度相比纯PLA提升了17.6%,随着MZF含量的提升,复合材料的吸波性能随之增强。当MZF的含量达到50wt%,在12.7 GHz处,厚度为7.4 mm时反射率达到最小值−55.3 dB,在厚度为7.9 mm时,有效吸波频带宽为4.5 GHz。因此,基于FDM制备的3D打印MZF/PLA复合材料具有良好的吸波性能和承载能力,是一种非常有前途的3D打印微波吸收材料。

     

  • 图  1  锰锌铁氧体(MZF)粉末的形貌

    Figure  1.  Morphology of Mn-Zn ferrite (MZF) powders

    图  2  MZF粉末的粒径分布(a)和磁滞回线(b)

    Dv(50)—Particle size at 50% volume fraction; Ms—Saturation magnetization; Hc—Coercivity; Mr—Residual magnetization

    Figure  2.  Particle size distribution (a) and hysteresis loop (b) of MZF powders

    图  3  MZF/PLA复合粉末的DSC曲线

    Figure  3.  DSC thermograms of MZF/PLA composite powders

    图  4  (a) MZF/PLA 复合线材;(b)同轴环;(c)拉伸试样

    Figure  4.  (a) MZF/PLA composite filaments; (b) Coaxial rings; (c) Tensile specimen

    图  5  不同MZF含量的MZF/PLA复合材料的XRD图谱

    Figure  5.  XRD patterns of MZF/PLA composite materials with different MZF contents

    图  6  MZF/PLA复合材料的TG曲线

    Figure  6.  TG curves of MZF/PLA composites

    图  7  MZF/PLA复合材料的应力-应变曲线

    Figure  7.  Stress-strain curves of MZF/PLA composites

    图  8  不同MZF含量的MZF/PLA复合材料的SEM图像

    Figure  8.  SEM images of MZF/PLA composites with different MZF contents

    图  9  不同MZF含量同轴环的电磁参数:在2~18 GHz频率范围内复介电常数的实部(a)和虚部(b);复磁导率的实部(c)和虚部(d);介电损耗角正切(e)和磁损耗角正切(f)

    Figure  9.  Electromagnetic parameters of coaxial rings with different MZF contents: Real (a) and imaginary (b) part of the complex permittivity; Real (c) and imaginary (d) part of the complex permeability; Tangent dielectric loss (e) and tangent magnetic loss (f) in the frequency range of 2-18 GHz

    图  10  MZF/PLA复合材料的涡流值C0

    Figure  10.  Eddy current data C0 of MZF/PLA composites

    图  11  10%MZF/PLA (a)、20%MZF/PLA (b)、30%MZF/PLA (c)、40%MZF/PLA (d)和50%MZF/PLA (e)的反射损耗三维图和吸波曲线

    ${R_{{{\rm{L}}_{{\rm{min}}}}}} $—Minimum reflection loss; EAB—Effective absorption bandwidth

    Figure  11.  3D maps of reflection loss and microwave absorption curves of 10%MZF/PLA (a), 20%MZF/PLA (b), 30%MZF/PLA (c), 40%MZF/PLA (d) and 50%MZF/PLA (e)

    图  12  (a) MZF/PLA复合材料的衰减系数;(b) 复合材料厚度为7.4 mm时的阻抗匹配特性

    d—Thickness

    Figure  12.  (a) Attenuation constants of MZF/PLA composites; (b) Impedance matching characteristics for the composites with the thickness of 7.4 mm

    图  13  微波吸收机制示意图

    Figure  13.  Schematic diagram of microwave absorption mechanism

    表  1  MZF/聚乳酸(PLA)复合材料的组分

    Table  1.   Component of MZF/polylactic acid (PLA) composites

    Sample numberMass fraction/wt%
    PLAMZF
    Pure PLA1000
    10%MZF/PLA9010
    20%MZF/PLA8020
    30%MZF/PLA7030
    40%MZF/PLA6040
    50%MZF/PLA5050
    下载: 导出CSV

    表  2  MZF/PLA复合粉末DSC曲线对应的数据

    Table  2.   DSC data of MZF/PLA composite powders

    Sample numberTm/℃Tc/℃Tg/℃
    Pure PLA114.0797.7180.81
    10%MZF/PLA110.8597.7181.17
    20%MZF/PLA112.1797.9881.89
    30%MZF/PLA110.8697.8881.62
    40%MZF/PLA111.1297.7181.35
    50%MZF/PLA111.1198.5281.89
    Notes: Tm—Melting temperature; Tc—Crystallization temperature; Tg—Glass transition temperature.
    下载: 导出CSV

    表  3  不同MZF含量的MZF/PLA复合材料的拉伸强度和断裂延伸率

    Table  3.   Tensile strength and elongation at break of MZF/PLA composites with different MZF contents

    Sample
    number
    Tensile strength/MPaElongation at break/%
    Pure PLA 34.40 26.12
    10%MZF/PLA 40.40 21.76
    20%MZF/PLA 35.60 20.56
    30%MZF/PLA 25.42 15.28
    40%MZF/PLA 16.07 8.93
    50%MZF/PLA 14.22 6.68
    下载: 导出CSV
  • [1] CHENG Y, ZHU W D, LU X F, et al. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding[J]. Composites Communications,2021,27:100823. doi: 10.1016/j.coco.2021.100823
    [2] ZONG M, HUANG Y, ZHAO Y S, et al. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites[J]. RSC Advances,2013,3(45):23638-23648. doi: 10.1039/c3ra43359e
    [3] JOP C T, JOS A A M V D. Impact of high electromagnetic field levels on childhood leukemia incidence[J]. International Journal of Cancer,2012,131(4):769-778. doi: 10.1002/ijc.27542
    [4] YAO L H, CAO W Q, ZHAO J G, et al. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage[J]. Journal of Materials Science & Technology,2022,127:48-60.
    [5] LIU T T, CAO M Q, FANG Y S, et al. Green building materials lit up by electromagnetic absorption function: A review[J]. Journal of Materials Science & Technology,2022,112:329-344.
    [6] ZHU J L, WANG X G, WANG X J, et al. Carbonyl iron powder/ethyl cellulose hybrid wall microcapsules encapsulating epoxy resin for wave absorption and self-healing[J]. Composites Science and Technology,2021,214:108960. doi: 10.1016/j.compscitech.2021.108960
    [7] ZHANG N, HAN M Y, WANG G H, et al. Achieving broad absorption bandwidth of the Co/carbon absorbers through the high-frequency structure simulator electromagnetic simulation[J]. Journal of Alloys and Compounds,2021,883:160918. doi: 10.1016/j.jallcom.2021.160918
    [8] HE N, HE Z D, LIU L, et al. Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-xalloy hollow microspheres[J]. Chemical Engineering Journal,2020,381:122743. doi: 10.1016/j.cej.2019.122743
    [9] GHASEMI A, HOSSIENPOUR A, MORISAKO A, et al. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite[J]. Journal of Magnetism and Magnetic Materials,2006,302(2):429-435. doi: 10.1016/j.jmmm.2005.10.006
    [10] QUAN L, QIN F X, ESTEVEZ D, et al. Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber[J]. Carbon,2017,125:630-639. doi: 10.1016/j.carbon.2017.09.101
    [11] ZHANG D Q, WANG H H, CHENG J Y. Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance[J]. Applied Surface Science,2020,528:147052. doi: 10.1016/j.apsusc.2020.147052
    [12] ZONG M, HUANG Y, ZHANG N. Influence of RGO/ferrite ratios and graphene reduction degree on microwave absorption properties of graphene composites[J]. Journal of Alloys and Compounds,2015,644:491-501. doi: 10.1016/j.jallcom.2015.05.073
    [13] DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon,2021,179:566-578. doi: 10.1016/j.carbon.2021.04.050
    [14] 田小永, 尚振涛, 尹丽仙, 等. 石墨烯超材料吸波结构3D打印[J]. 航空制造技术, 2019, 62(5): 14-22.

    TIAN Xiaoyong, SHANG Zhentao, YIN Lixian, et al. 3D printing of graphene metamaterial absorbing structure[J]. Aviation Manufacturing Technology, 2019, 62(5): 14-22(in Chinese).
    [15] TIAN X Y, YIN M, LI D C, et al. 3D printing: A useful tool for the fabrication of artificial electromagnetic (EM) medium[J]. Rapid Prototyping Journal,2016,22(2):251-257. doi: 10.1108/RPJ-09-2014-0122
    [16] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成形研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386.

    FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese).
    [17] HU C, LI Z Y, WANG Y L, et al. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: Reduced graphene oxide or carbon nanotubes[J]. Journal of Materials Chemistry C,2017,5(9):2318-2328. doi: 10.1039/C6TC05261D
    [18] HADI N. Interlayer fracture energy of 3D-printed PLA material[J]. The International Journal of Advanced Manufacturing Technology,2019,101(5-8):1959-1965. doi: 10.1007/s00170-018-3031-5
    [19] KIM S S, JO S B, GUEON K I, et al. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies[J]. IEEE Transactions on Magnetics, 1991, 27(2): 5462-5464.
    [20] THAKUR P T, DEEPIKA S C. Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2021,530:167925. doi: 10.1016/j.jmmm.2021.167925
    [21] 陈国红, 周芳灵, 赵丽平, 等. 铁氧体磁性材料的吸波机理及改善吸波性能的研究进展[J]. 化工进展, 2015, 34(11):3965-3969.

    CHEN Guohong, ZHOU Fangling, ZHAO Liping, et al. Research progress on absorbing mechanism and improving absorbing properties of ferrite magnetic materials[J]. Progress in Chemical Industry,2015,34(11):3965-3969(in Chinese).
    [22] 王国栋. 铁氧体吸波材料研究进展[J]. 科技风, 2019(29):166-167.

    WANG Guodong. Research progress of ferrite microwave absorbing materials[J]. Science and Technology Wind,2019(29):166-167(in Chinese).
    [23] FIORILLO F B, ORIANO C B. Eddy-current losses in Mn-Zn ferrites[J]. IEEE Transactions on Magnetics,2014,50(1):1-9.
    [24] WANG W J, ZANG C G, JIAO Q J. Fabrication and performance optimization of Mn-Zn ferrite/EP composites as microwave absorbing materials[J]. Chinese Physics B,2013,22(12):482-486.
    [25] SONG J, WANG L X, XU N C, et al. Microwave electromagnetic and absorbing properties of Dy3+ doped MnZn ferrites[J]. Journal of Rare Earth (English Edition),2010,28(3):451-455. doi: 10.1016/S1002-0721(09)60132-0
    [26] QIAN Y, YAO Z J, LIN H Y, et al. Mechanical and microwave absorption properties of 3D-printed Li0.44Zn0.2Fe2.36O4/polylactic acid composites using fused deposition modeling[J]. Journal of Materials Science: Materials in Electronics,2018,29(22):19296-19307. doi: 10.1007/s10854-018-0056-3
    [27] 吴海华, 胡正浪, 李雨恬, 等. 铁镍合金/聚乳酸复合材料的熔融沉积成形制备及其电磁吸收性能和力学性能[J]. 复合材料学报, 2022, 39(1):172-182. doi: 10.13801/j.cnki.fhclxb.20210311.003

    WU Haihua, HU Zhenglang, LI Yutian, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica,2022,39(1):172-182(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210311.003
    [28] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics: Determination of tensile properties: GB/T 1040—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [29] 周尧, 赵雄燕, 孙占英, 等. 聚乳酸/羟基磷灰石复合材料研究进展[J]. 应用化工, 2017, 46(10):2014-2018. doi: 10.3969/j.issn.1671-3206.2017.10.037

    ZHOU Yao, ZHAO Xiongyan, SUN Zhanying, et al. Research progress of polylactic acid/hydroxyapatite composites[J]. Applied Chemical Industry,2017,46(10):2014-2018(in Chinese). doi: 10.3969/j.issn.1671-3206.2017.10.037
    [30] 刘顺华. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2007.

    LIU Shunhua. Electromagnetic wave shielding and absorbing material[M]. Beijing: Chemical Industry Press, 2007(in Chinese).
    [31] 朱洪立, 张玉军, 于名讯, 等. 溶胶-凝胶/燃烧法制备锰锌铁氧体及其吸波性能研究[J]. 人工晶体学报, 2014, 43(6):1465-1470. doi: 10.3969/j.issn.1000-985X.2014.06.028

    ZHU Hongli, ZHANG Yujun, YU Mingxun, et al. Preparation of Mn-Zn-ferrite by sol-gel/combustion method and its microwave absorbing properties[J]. Journal of Intraocular Lens,2014,43(6):1465-1470(in Chinese). doi: 10.3969/j.issn.1000-985X.2014.06.028
    [32] SUN Q L, SUN L, CAI Y Y, et al. Fe3O4-intercalated reduced graphene oxide nanocomposites with enhanced microwave absorption properties[J]. Ceramics International,2019,45(15):18298-18305. doi: 10.1016/j.ceramint.2019.06.042
    [33] CHEN Y J, ZHANG F, ZHAO G G, et al. Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods[J]. The Journal of Physical Chemistry,2010,114(20):9239-9244. doi: 10.1021/jp912178q
    [34] LIU G Z, JIANG W, SUN D P, et al. One-pot synthesis of urchinlike Ni nanoparticles/RGO composites with extraordinary electromagnetic absorption properties[J]. Applied Surface Science,2014,314:523-529. doi: 10.1016/j.apsusc.2014.07.041
    [35] CAO M S, CAI Y Z, HE P, et al. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal,2019,359:1265-1302. doi: 10.1016/j.cej.2018.11.051
    [36] ZHANG H X, SHI C, JIA Z R, et al. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,584:382-394. doi: 10.1016/j.jcis.2020.09.122
    [37] XU D W, YANG S, CHEN P, et al. 3D nitrogen-doped porous magnetic graphene foam-supported Ni nanocomposites with superior microwave absorption properties[J]. Journal of Alloys and Compounds,2019,782:600-610. doi: 10.1016/j.jallcom.2018.12.239
    [38] WANG Y L, WANG G S, ZHANG X J, et al. Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading[J]. Journal of Materials Science & Technology,2022,103(8):34-41.
    [39] SHEN J Y, ZHANG D F, HAN C G, et al. Three-dimensional flower-like FeCoNi/reduced graphene oxide nanosheets with enhanced impedance matching for high-performance electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,883:160877. doi: 10.1016/j.jallcom.2021.160877
    [40] YOU C Y, FAN X D, TIAN N, et al. Improved electromagnetic microwave absorption of the annealed pre-sintered precursor of Mn-Zn ferrite[J]. Journal of Magnetism and Magnetic Materials,2015,381:377-381. doi: 10.1016/j.jmmm.2014.12.089
    [41] SUN Y, WANG Y J, MA H J, et al. Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance[J]. Carbon,2021,178:515-527. doi: 10.1016/j.carbon.2021.03.032
    [42] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7):3292-3302. doi: 10.13801/j.cnki.fhclxb.20210819.008

    YE XiCong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3292-3302(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210819.008
    [43] LI Z J, HOU Z L, SONG W L, et al. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption[J]. Nanoscale,2016,8(19):10415-10424. doi: 10.1039/C6NR00223D
    [44] LI Z X, LI X H, ZONG Y. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers[J]. Carbon,2017,115:493-502. doi: 10.1016/j.carbon.2017.01.036
    [45] XU X Q, RAN F T, FAN Z M, et al. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption[J]. Carbon,2021,171:211-220. doi: 10.1016/j.carbon.2020.08.070
    [46] XUE W, YANG G, BI S, et al. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption[J]. Carbon,2021,173:521-527. doi: 10.1016/j.carbon.2020.11.016
    [47] CAO F H, XU J, LIU M J, et al. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption[J]. Journal of Materials Science & Technology,2022,108(13):1-9.
    [48] FENG J, ZONG Y, SUN Y. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance[J]. Chemical Engineering Journal,2018,345:441-451. doi: 10.1016/j.cej.2018.04.006
    [49] WANG H Y, SUN X B, YANG S H, et al. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption[J]. Nano-Micro Letters,2021,13(12):330-344.
    [50] ZHANG X J, WANG G S, CAO W Q, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride[J]. ACS Applied Materials & Interfaces,2014,6(10):7471-7478.
    [51] SHU J C, CAO M S. Graphene-based electromagnetic functional materials[J]. Surface Technology,2020,49(2):29-40.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  454
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-06-24
  • 录用日期:  2022-07-13
  • 网络出版日期:  2022-07-27
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回