留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性可擦拭表面增强拉曼散射基底的原位制备和应用

田晓然 安保印 喻倩 孔宪明

田晓然, 安保印, 喻倩, 等. 柔性可擦拭表面增强拉曼散射基底的原位制备和应用[J]. 复合材料学报, 2022, 39(5): 2280-2287. doi: 10.13801/j.cnki.fhclxb.20210721.001
引用本文: 田晓然, 安保印, 喻倩, 等. 柔性可擦拭表面增强拉曼散射基底的原位制备和应用[J]. 复合材料学报, 2022, 39(5): 2280-2287. doi: 10.13801/j.cnki.fhclxb.20210721.001
TIAN Xiaoran, AN Baoyin, YU Qian, et al. In-situ growth and application of cotton swab-Ag composite as flexible and wipeable surface enhanced Raman scattering substrate[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2280-2287. doi: 10.13801/j.cnki.fhclxb.20210721.001
Citation: TIAN Xiaoran, AN Baoyin, YU Qian, et al. In-situ growth and application of cotton swab-Ag composite as flexible and wipeable surface enhanced Raman scattering substrate[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2280-2287. doi: 10.13801/j.cnki.fhclxb.20210721.001

柔性可擦拭表面增强拉曼散射基底的原位制备和应用

doi: 10.13801/j.cnki.fhclxb.20210721.001
基金项目: 辽宁省教育厅基金项目(L2019011);辽宁石油化工大学博士启动基金(2017XJJ-037)
详细信息
    通讯作者:

    孔宪明,博士,副教授,硕士生导师,研究方向为胶体与界面化学 E-mail:xmkong@Inpu.edu.cn

  • 中图分类号: O657. 3

In-situ growth and application of cotton swab-Ag composite as flexible and wipeable surface enhanced Raman scattering substrate

  • 摘要: 为了检测水果表面农药残留,通过化学沉积-原位生长法制备Ag/棉签柔性可擦拭表面增强拉曼光谱(SERS)基底。通过调控生长介质中硝酸银的浓度,得到了银纳米粒子紧密堆积的Ag/棉签复合材料。通过扫描电子显微镜、透射电子显微镜、红外光谱仪、热重分析仪对Ag/棉签复合材料的形貌、结构及其性能进行表征。利用尼尔兰作为探针分子表征了Ag/棉签复合材料的SERS性能,实现了对水果表面农药残留福美双的快速检测。结果表明,银纳米粒子直径分布在50~70 nm之间。Ag/棉签复合材料表现出优异的光谱均一性,相对标准偏差为3.72%。对尼尔兰的检出限低于10−7 mol/L。通过简单的擦拭直接检测梨不规则表面上的福美双农药残留,检出限达到10−6 mol/L。该制备方法可以简单地扩展到其他纤维素化合物,例如吸棉花和纸等。本研究提出了一种简单快速的方法用于制备廉价、环保的柔性SERS基底。

     

  • 图  1  (a)不同浓度AgNO3制备的银/棉签复合材料的尼尔兰(NB)(10−6 mol/L)表面增强拉曼光谱(SERS) ; (b) 尼尔兰在1356, 1640 cm−1的拉曼强度与AgNO3浓度的关系图

    Figure  1.  (a) Surface enhanced Raman scattering (SERS) spectra of Nile Blue (NB) (10−6 mol/L) on Ag/cotton swab composite prepared with different concentrations of AgNO3; (b) Plots of Raman intensity of NB at 1356, 1640 cm−1 versus concentration of AgNO3

    图  2  ((a), (b)) 棉签在沉积银纳米粒子前的SEM图像; ((c), (d)) Ag/棉签复合材料的SEM图像; ((e), (f)) Ag/棉签复合材料中Ag和C的元素成像

    Figure  2.  ((a), (b)) SEM images of the cotton swab before deposition of silver nanoparticles; ((c), (d)) SEM image of Ag/cotton swab composite; ((e), (f)) Elemental mapping of Ag and C in the Ag/cotton swab composite

    图  3  ((a), (b)) Ag/棉签复合材料的TEM图像; (c) 随机选择的银纳米粒子的HRTEM图像; (d) 棉签上银纳米粒子的选区电子衍射(SAED)图谱

    Figure  3.  ((a), (b)) TEM images of Ag/cotton swab composite; (c) HRTEM of randomly selected silver nanoparticle; (d) Selected area electron diffraction (SAED) spectrum of silver nanoparticle on cotton swab

    图  4  棉签和Ag/棉签复合材料的红外光谱

    Figure  4.  FT-IR spectra of cotton swab and Ag/cotton swab composite

    图  5  棉签和Ag/棉签复合材料的热重图(TG)

    Figure  5.  Thermogravimetry (TG) of cotton swab and Ag/cotton swab composite

    图  6  (a)不同浓度尼尔兰的SERS光谱; (b) 1640 cm−1处拉曼峰强度与尼尔兰浓度曲线; (c)固体尼尔兰和从Ag/棉签复合材料上测的尼尔兰的SERS光谱; (d)不同基底吸附后的NB(1.3×10-5 mol/L)吸收光谱

    Figure  6.  (a) SERS spectra of NB at different concentrations; (b) Dose-response curves of the peak at 1640 cm−1 from the spectra; (c) Solid NB and SERS spectra of NB measured from Ag/cotton swab composite; (d) Absorption spectra of NB (1.3×10-5 mol/L) after adsorbed by different substrate

    图  7  (a) Ag/棉签复合材料上五个随机选择位置尼尔兰(10−6 mol/L)的拉曼光谱; ((b), (d)) 强度统计图; (c) 20天内Ag/棉签复合材料上尼尔兰(10−6 mol/L)的拉曼光谱

    Figure  7.  (a) SERS spectrum of NB (10−6 mol/L) at five randomly selected positions on the Ag/cotton swab composite; ((b), (d)) Raman intensity statistics; (c) SERS spectra of NB (10−6 mol/L) during 20 days

    RSD—Relative standard deviation

    图  8  (a) Ag/棉签复合材料作为SERS基底从梨表面检测福美双; (b)梨表面测量的1380 cm−1处拉曼峰强度与福美双浓度曲线

    Figure  8.  (a) Ag/cotton swab composite used as SERS substrate to detect Thiram from the surface of pear; (b) Dose-response curves of the peak at 1380 cm−1 from the spectra measured from pear

    图  9  模拟从梨表面上的混合物中检测福美双和尼尔兰

    Figure  9.  Simultaneous detection of thiram and NB from their mixture on the surface of pear

  • [1] WERNE T V, PATTN T E. Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations[J]. Journal of the American Chemical Society,1999,121:7409-7410. doi: 10.1021/ja991108l
    [2] ZHANG J T, KELLER T F, GALLAGHER H, et al. Responsive hybrid polymeric/metallic nanoparticles for catalytic applications[J]. Macromolecular Materials and Engi-neering,2010,295(11):1049-1057. doi: 10.1002/mame.201000204
    [3] WU J L, CHEN F C, HSIAO Y S, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells[J]. ACS Nano,2011,5(2):959-967. doi: 10.1021/nn102295p
    [4] HARTMAN C, POPOWSKI Y, RAICHMAN D, et al. Biodegradable polymer coating for controlled release of hydrophobic functional molecules from cotton fabrics[J]. Journal of Coatings Technology and Research,2020,17:669-679. doi: 10.1007/s11998-019-00278-3
    [5] ZHANG R, ZHANG Y, DONG Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature,2013,498:82-86. doi: 10.1038/nature12151
    [6] GONG Z, DU H, CHENG F, et al. Fabrication of SERS swab for direct detection of trace explosives in fingerprints[J]. ACS Applied Materials & Interfaces,2014,6(24):21931-21937. doi: 10.1021/am507424v
    [7] FAN M, ZHANG Z, HU J, et al. Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling[J]. Materials Letters,2014,133(15):57-59.
    [8] LANE L A, QIAN X, NIE S. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging[J]. Chemical Reviews,2015,115(19):10489-10529. doi: 10.1021/acs.chemrev.5b00265
    [9] ZHANG H, LIU M, ZHOU F, et al. Physical deposition improved SERS stability of morphology controlled periodic micro/nanostructured arrays based on colloidal templates[J]. Small,2015,11(7):844-853.
    [10] SUN F, HUNG H C, SINCLAI R, et al. Hier-archical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma[J]. Nature Communications,2016,7:13437. doi: 10.1038/ncomms13437
    [11] STRANAHAN S M, WILLETS K A. Super-resolution optical imaging of single-molecule SERS hot spots[J]. Nano Letters,2010,10(9):3777-3784. doi: 10.1021/nl102559d
    [12] JI W, LI L, SONG W, et al. Enhanced Raman scattering by ZnO superstructures: Synergistic effect of charge transfer and Mie resonances[J]. Angewandte Chemie Interna-tional Edition,2019,58(41):14452-14456. doi: 10.1002/anie.201907283
    [13] JIANG X, ZHANG J, XU L, et al. Ultrasensitive SERS detection of antitumor drug methotrexate based on modified Ag substrate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,240:118589. doi: 10.1016/j.saa.2020.118589
    [14] LIN X, FANG G, LIU Y, et al. Marangoni effect-driven transfer and compression at three-phase interfaces for highly reproducible nanoparticle monolayers[J]. Journal of Phy-sical Chemistry Letters,2020,11(9):3573-3581. doi: 10.1021/acs.jpclett.0c01116
    [15] ZHANG C, YOU T, YANG N, et al. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine[J]. Food Chemistry,2019,287:363-368. doi: 10.1016/j.foodchem.2019.02.094
    [16] XIONG Z, LIN M, LIN H, et al. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice[J]. Carbohydrate Polymers,2018,189:79-86. doi: 10.1016/j.carbpol.2018.02.014
    [17] CHEN Y, GE F, GUANG S, et al. Self-assembly of Ag nanoparticles on the woven cotton fabrics as mechanical fle-xible substrates for surface enhanced Raman scattering[J]. Journal of Alloys and Compounds,2017,726:484-489. doi: 10.1016/j.jallcom.2017.07.315
    [18] XIA L, XU M, CHENG G, et al. Facile construction of Ag nanoparticles encapsulated into carbon nanotubes with robust antibacterial activity[J]. Carbon,2018,130:775-781. doi: 10.1016/j.carbon.2018.01.073
    [19] DUCHEMIN B, CORRE D L E, LERAY N, et al. All-cellulose composites based on microfibrillated cellulose and filter paper via a NaOH-urea solvent system[J]. Cellulose,2016,23:593-609. doi: 10.1007/s10570-015-0835-4
    [20] CHENG D, HE M, RAN J, et al. Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection[J]. Sensors and Actuators B: Chemical,2018,270:508-517. doi: 10.1016/j.snb.2018.05.075
    [21] ZHOU Y, ZHI J, ZHAO J, et al. Surface-enhanced Raman scattering of 4-aminothiophenol adsorbed on silver nanosheets deposited onto cubic boron nitride films[J]. Analytical Sciences,2010,26(9):957-961. doi: 10.2116/analsci.26.957
    [22] 刘思佳, 喻倩, 王锐, 等. 再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测[J]. 纺织学报, 2020, 41(7):24-28.

    LIU Sijia, YU Qian, WANG Rui, et al. Preparation of flexible Au nanoparticle decorated regenerated cellulose fiber compound and quickly detection of Nile Blue[J]. Journal of Textile Research,2020,41(7):24-28(in Chinese).
    [23] LI D, OUYANG L, YAO L, et al. In situ SERS monitoring the visible light photocatalytic degradation of Nile Blue on Ag@AgCl single hollow cube as a microreactor[J]. Chemistry Select,2018,3(2):428-435. doi: 10.1002/slct.201702545
    [24] ZHU Y, LI M, YU D, et al. A novel paper rag as ‘D-SERS’ substrate for detection of pesticide residues at various peels[J]. Talanta,2014,128:117-124. doi: 10.1016/j.talanta.2014.04.066
    [25] SUN H, LIU H, WU Y. A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice[J]. Applied Surface Science,2017,416:704-709. doi: 10.1016/j.apsusc.2017.04.159
  • 加载中
图(9)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  468
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 修回日期:  2021-07-01
  • 录用日期:  2021-07-09
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回