留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交替浸渍法对La0.65Sr0.35MnO3氧电极的性能优化

张旭 吴萍萍 丁利利 田彦婷

张旭, 吴萍萍, 丁利利, 等. 基于交替浸渍法对La0.65Sr0.35MnO3氧电极的性能优化[J]. 复合材料学报, 2021, 39(0): 1-11
引用本文: 张旭, 吴萍萍, 丁利利, 等. 基于交替浸渍法对La0.65Sr0.35MnO3氧电极的性能优化[J]. 复合材料学报, 2021, 39(0): 1-11
Xu ZHANG, Pingping WU, Lili DING, Yanting TIAN. Performance optimization of La0.65Sr0.35MnO3 oxygen electrode based on alternate infiltration method[J]. Acta Materiae Compositae Sinica.
Citation: Xu ZHANG, Pingping WU, Lili DING, Yanting TIAN. Performance optimization of La0.65Sr0.35MnO3 oxygen electrode based on alternate infiltration method[J]. Acta Materiae Compositae Sinica.

基于交替浸渍法对La0.65Sr0.35MnO3氧电极的性能优化

基金项目: 山西省应用基础研究计划面上青年基金项目(201901D211063);山西省高等学校科技创新项目(2019L0285)
详细信息
    通讯作者:

    田彦婷,博士,副教授,硕士生导师,研究方向为氧化物燃料电池 E-mail:yanting_005@163.com

  • 中图分类号: O6、TQ

Performance optimization of La0.65Sr0.35MnO3 oxygen electrode based on alternate infiltration method

  • 摘要: 氢能以其高效、清洁、可再生的优点成为化石能源的有效替代者,而可逆固体氧化物电池(RSOC)既可利用氢气输出电能,也可电解H2O产生氢气,对其研究具有十分重要的意义。本文对RSOC的氧电极进行了研究,在La0.65Sr0.35MnO3(LSM)氧电极的基础上,采用溶液交替浸渍法将Sm0.2Ce0.8O1.9(SDC)和Sm0.5Sr0.5CoO3−δ(SSC)纳米粒子引入LSM氧电极中。800℃时,交替浸渍1次的LSM-SDC-SSC1氧电极的极化电阻为0.49 Ω·cm2,是纯LSM电极(1.12 Ω·cm2)的43%。SDC和SSC的浸渍顺序对电极形貌和性能的影响随着浸渍次数的增加逐渐减弱,交替浸渍2次的LSM-SDC-SSC2氧电极具有最低的极化过电位和极化电阻。Ni-YSZ/YSZ/LSM-SDC-SSC2单电池在800°C时的最大功率密度为870 mW·cm−2,是纯LSM电池的6.3倍,在SOEC模式下的最大电解电流密度为−1150 mA·cm−2,具有良好的可逆电池输出性能。

     

  • 图  1  La0.65Sr0.35MnO3(LSM)、LSM- Sm0.2Ce0.8O1.9(SDC)和LSM- Sm0.5Sr0.5CoO3-δ(SSC)氧电极的截面SEM图

    Figure  1.  SEM cross sections of La0.65Sr0.35MnO3 (LSM)、LSM- Sm0.2Ce0.8O1.9 (SDC)和LSM-Sm0.5Sr0.5CoO3-δ (SSC) oxygen electrodes

    图  2  交替浸渍后LSM-SSC-SDC与LSM-SDC-SSC氧电极的截面SEM图

    Figure  2.  SEM cross sections of alternate infiltrated LSM-SSC-SDC and LSM-SDC-SSC oxygen electrodes

    图  3  SSC和SDC浸渍LSM氧电极的XRD图

    Figure  3.  XRD pattern of the SSC and SDC infiltrated LSM oxygen electrode

    图  4  不同温度下LSM,LSM-SDC,LSM-SSC和LSM-SDC-SSC1氧电极的极化阻抗谱图

    Figure  4.  Impedance spectra of LSM, LSM-SDC, LSM-SSC and LSM-SDC-SSC1 oxygen electrodes at different temperatures

    图  5  不同浸渍顺序的氧电极在不同温度下的极化阻抗谱图

    Figure  5.  Impedance spectra of oxygen electrodes with different infiltration sequences at different temperatures

    图  6  不同浸渍次数对LSM氧电极性能的影响

    Figure  6.  The influence of different infiltration time on the performance of LSM oxygen electrode

    图  7  不同氧电极对应的单电池在800°C时的SOFCs电化学性能

    Figure  7.  The electrochemical performance of SOFCs with different oxygen electrodes at 800°C

    图  8  不同氧电极对应的电解池在800°C时的电解性能

    Figure  8.  The electrolytic performance of electrolytic cells with different oxygen electrodes at 800°C

    表  1  不同浸渍顺序的氧电极在不同温度下的极化电阻

    Table  1.   Polarization resistances of oxygen electrodes with different infiltration sequences at different temperatures

    Oxygen electrodesPolarization resistance Z'/(Ω·cm2)
    650℃700℃750℃800℃
    LSM-SSC-SDC13.2631.5360.9070.551
    LSM-SSC-SDC20.9540.4360.2470.153
    LSM-SDC-SSC12.6391.3070.8060.481
    LSM-SDC-SSC20.9880.37180.2490.179
    Notes: LSM-SSC-SDC1 and LSM-SSC-SDC2 infiltration SSC first, then SDC, alternate infiltration times are 1 and 2, respectively; LSM-SDC-SSC1 and LSM-SDC-SSC2 infiltration SDC first, then SSC, the alternate infiltration times are 1 and 2 times, respectively.
    下载: 导出CSV
  • [1] HööK M, TANG X. Depletion of fossil fuels and anthropogenic climate change—A review[J]. Energy Policy,2013,52:797-809. doi: 10.1016/j.enpol.2012.10.046
    [2] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: A review[J]. Renewable and sustainable energy reviews,2011,15(3):1513-1524. doi: 10.1016/j.rser.2010.11.037
    [3] JIANG S P. Challenges in the development of reversible solid oxide cell technologies: a mini review[J]. Asia-Pacific Journal of Chemical Engineering,2016,11(3):386-391. doi: 10.1002/apj.1987
    [4] DI GIORGIO P. DESIDERI U. Potential of reversible solid oxide cells as electricity storage system[J]. Energies,2016,9(8):662. doi: 10.3390/en9080662
    [5] WENDEL C H, BRAUN R J. Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage[J]. Applied energy,2016,172:118-131. doi: 10.1016/j.apenergy.2016.03.054
    [6] AI DAROUKH M, TIETZ F, SEBOLD D, et al. Post-test analysis of electrode-supported solid oxide electrolyser cells[J]. Ionics,2015,21(4):1039-1043. doi: 10.1007/s11581-014-1273-2
    [7] THE D, GRIESHAMMER S, SCHROEDER M, et al. Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h[J]. Journal of power sources,2015,275:901-911. doi: 10.1016/j.jpowsour.2014.10.188
    [8] KIM J, JI H I, DASARI H P, et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization[J]. International Journal of Hydrogen Energy,2013,38(3):1225-1235. doi: 10.1016/j.ijhydene.2012.10.113
    [9] CHEN K. Failure mechanism of (La, Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy,2011,36(17):10541-10549. doi: 10.1016/j.ijhydene.2011.05.103
    [10] CHEN K, HYODO J, AI N, et al. Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions[J]. international journal of hydrogen energy,2016,41(3):1419-1431. doi: 10.1016/j.ijhydene.2015.11.013
    [11] WEI B, CHEN K, ZHAO L, et al. Chromium deposition and poisoning at La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrodes of solid oxide electrolysis cells[J]. Physical Chemistry Chemistry Physics,2015,17(3):1601-1609. doi: 10.1039/C4CP05110F
    [12] HEIDARI D, JAVADPOUR S, CHAN S H. Optimization of BSCF-SDC composite air electrode for intermediate temperature solid oxide electrolyzer cell[J]. Energy Conversion and Management,2017,136:78-84. doi: 10.1016/j.enconman.2017.01.007
    [13] BI J, YANG S, ZHONG S, et al. An insight into the effects of B-site transition metals on the activity, activation effect and stability of perovskite oxygen electrodes for solid oxide electrolysis cells[J]. Journal of Power Sources,2017,363:470-479. doi: 10.1016/j.jpowsour.2017.07.118
    [14] IM H N, JEON S Y, LIM D K. et al. Steam/CO2 Co-Electrolysis Performance of Reversible Solid Oxide Cell with La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O2-δ Oxygen Electrode[J]. Journal of The Electrochemical Society,2014,162(1):54-59.
    [15] ZUO X, CHEN Z, GUAN C, et al. Molten Salt Synthesis of High-Performance, Nanostructured La0.6Sr0.4FeO3-δ Oxygen Electrode of a Reversible Solid Oxide Cell[J]. Materials,2020,13(10):2267. doi: 10.3390/ma13102267
    [16] ZHANG L, LIU M, HUANG J, et al. Improved thermal expansion and electrochemical performances of Ba0.6Sr0.4Co0.9Nb0.1O3−δ–Gd0.1Ce0.9O1.95 composite cathodes for IT-SOFCs[J]. international journal of hydrogen energy,2014,39(15):7972-7979. doi: 10.1016/j.ijhydene.2014.03.055
    [17] CARPANESE M P, CLEMATIS D, BRETEI A, et al. Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part I — Experimental and electrochemical[J]. Solid State Ionics,2017,301:106-115. doi: 10.1016/j.ssi.2017.01.007
    [18] MOGENSEN M B. Materials for reversible solid oxide cells[J]. Current Opinion in Electrochemistry,2020,21:265-273. doi: 10.1016/j.coelec.2020.03.014
    [19] YUN B H, KIM K J, JOH D W, et al. Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures[J]. Journal of Materials Chemistry A,2019,7(36):20558-20566. doi: 10.1039/C9TA09203J
    [20] SHIMADA H, FUJIMAKI Y, FUJISHIRO Y. Highly active and durable La0.4Sr0.6MnO3−δ and Ce0.8Gd0.2O1.9 nanocomposite electrode for high-temperature reversible solid oxide electrochemical cells[J]. Ceramics International,2020,46(11):19617-19623. doi: 10.1016/j.ceramint.2020.05.030
    [21] KIM J H, SONG R H, KIM J H, et al. Co-synthesis of nano-sized LSM–YSZ composites with enhanced electrochemical property[J]. Journal of Solid State Electrochemistry,2007,11(10):1385-1390. doi: 10.1007/s10008-007-0317-1
    [22] TAN Y, GAO S, XIONG C Y, et al. Nano-structured LSM-YSZ refined with PdO/ZrO2 oxygen electrode for intermediate temperature reversible solid oxide cells[J]. International Journal of Hydrogen Energy,2020,45(38):19823-19830. doi: 10.1016/j.ijhydene.2020.05.116
    [23] ZHANG S L, WANG H, LU M Y, et al. Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3-δ infiltrated La0.8Sr0.2MnO3Zr0.92Y0.16O2-δ oxygen electrodes for intermediate-temperature solid oxide electrochemical cells[J]. Journal of Power Sources,2019,426:233-241. doi: 10.1016/j.jpowsour.2019.04.044
    [24] AKBARI Z, BABAEI A. Electrochemical performance of La0.8Sr0.2MnO3 oxygen electrode promoted by Ruddlesden-Popper structured La2NiO4[J]. Journal of the American Ceramic Society,2019,103(2):1332-1342.
    [25] SHAHROKHI S, BABAEI A, ZAMANI C. Electrochemical performance and stability of LNC-infiltrated (La, Sr)MnO3 oxygen electrode/ AIP Conference Proceedings[J]. AIP Publishing LLC,2018,1920(1):020020.
    [26] FAN H, HAN M. Electrochemical performance and stability of Sr-doped LaMnO3-infiltrated yttria stabilized zirconia oxygen electrode for reversible solid oxide fuel cells[J]. International Journal of Coal Science & Technology,2014,1(1):56-61.
    [27] CHEN K, AI N. Enhanced electrochemical performance and stability of (La, Sr)MnO3 –(Gd, Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration[J]. International Journal of Hydrogen Energy,2012,37(2):1301-1310. doi: 10.1016/j.ijhydene.2011.10.015
    [28] DING D, GONG M, XU C, et al. Electrochemical characteristics of samaria-doped ceria infiltrated strontium-doped LaMnO3 cathodes with varied thickness for yttria-stabilized zirconia electrolytes[J]. Journal of Power Sources,2011,196(5):2551-2557. doi: 10.1016/j.jpowsour.2010.11.007
    [29] REMBELSK D, VIRICELLE J P, COMBEMALE L, et al. Characterization and Comparison of Different Cathode Materials for SC-SOFC: LSM, BSCF, SSC, and LSCF[J]. Fuel Cells,2012,12(2):256-264. doi: 10.1002/fuce.201100064
    [30] Fan H, Han M. Electrochemical stability of Sm0.5Sr0.5CoO3−δ-infiltrated YSZ for solid oxide fuel cells/electrolysis cells[J]. Faraday discussions,2015,182:477-491. doi: 10.1039/C5FD00022J
    [31] Wang Y, Yang Z, Han M, et al. Optimization of Sm0.5Sr0.5CoO3−δ-infiltrated YSZ electrodes for solid oxide fuel cell/electrolysis cell[J]. RSC Advances,2016,6(113):112253-112259. doi: 10.1039/C6RA21200J
    [32] LU C, SHOLKLAPPER T Z, JACOBSON C P, et al. LSM-YSZ cathodes with reaction-infiltrated nanoparticles[J]. Journal of the Electrochemical Society,2006,153(6):A1115-A1119. doi: 10.1149/1.2192733
    [33] LEE S, KIM J, SON J W, et al. High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts[J]. Journal of Power Sources,2014,250:15-20. doi: 10.1016/j.jpowsour.2013.10.123
    [34] YOON K J, BISWAS M, KIM H J, et al. Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells[J]. Nano Energy,2017,36:9-20. doi: 10.1016/j.nanoen.2017.04.024
    [35] MEN H J, TIAN N, QU Y M, et al. Improved performance of a lanthanum strontium manganite–based oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement[J]. Ceramics International,2019,45(6):7945-7949. doi: 10.1016/j.ceramint.2019.01.107
    [36] SHIMURA K, NISHINO H, KAKINUMA K, et al. Effect of samaria-doped ceria (SDC) interlayer on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ/SDC composite oxygen electrode for reversible solid oxide fuel cells[J]. Electrochimica Acta,2017,225:114-120. doi: 10.1016/j.electacta.2016.12.100
    [37] LEE T H, FAN L, YU C C, et al. A high-performance SDC-infiltrated nanoporous silver cathode with superior thermal stability for low temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A,2018,6(17):7357-7363. doi: 10.1039/C8TA01104D
    [38] YOU R W, OUYANG J, FU Y P, et al. Characterization of Ce0.8Sm0.2O2−δ-infiltrated La0.8Ca0.2CoO3−δ cathode for solid oxide fuel cells[J]. Ceramics International,2013,39(7):8411-8419. doi: 10.1016/j.ceramint.2013.04.022
    [39] BRITO M E, MORISHITA H, YAMADA J, et al. Further improvement in performances of La0.6Sr0.4Co0.2Fe0.8O3-δ ceria composite oxygen electrodes with infiltrated doped ceria nanoparticles for reversible solid oxide cells[J]. Journal of Power Sources,2019,427:293-298. doi: 10.1016/j.jpowsour.2019.04.066
    [40] JIANG W, LV Z, WEI B, et al. Sm0.5Sr0.5CoO3–Sm0.2Ce0.8O1.9 composite oxygen electrodes for solid oxide electrolysis cells[J]. Fuel cells,2014,14(1):76-82. doi: 10.1002/fuce.201300091
    [41] JIANG W, WEI B, LV Z, et al. Co-synthesis of Sm0.5Sr0.5CoO3-Sm0.2Ce0.8O1.9 Composite Cathode with Enhanced Electrochemical Property for Intermediate Temperature SOFCs[J]. Fuel Cells,2014,14(6):966-972. doi: 10.1002/fuce.201400022
    [42] ZHANG Y, HAN M, SUN Z, High performance and stability of nanocomposite oxygen electrode for solid oxide cells[J]. International Journal of Hydrogen Energy, 2020, 45(8): 5554-5564.
    [43] HANIFI A R, LAGUNA-BERCERO M A, ETSELL T H, et al. The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes[J]. International Journal of Hydrogen Energy,2014,39(15):8002-8008. doi: 10.1016/j.ijhydene.2014.03.071
    [44] IRVINE J T S, NEAGU D, VERBRAEHEN M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy,2016,1(1):1-13.
    [45] JIANG S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges[J]. International Journal of Hydrogen Energy,2012,37(1):449-470. doi: 10.1016/j.ijhydene.2011.09.067
  • 加载中
计量
  • 文章访问数:  95
  • HTML全文浏览量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 录用日期:  2021-11-26
  • 修回日期:  2021-11-25
  • 网络出版日期:  2021-12-23

目录

    /

    返回文章
    返回