留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属-碳纤维增强树脂复合材料复合型柱壳屈曲特性试验及数值

左新龙 唐文献

左新龙, 唐文献. 金属-碳纤维增强树脂复合材料复合型柱壳屈曲特性试验及数值[J]. 复合材料学报, 2023, 40(6): 3640-3650. doi: 10.13801/j.cnki.fhclxb.20220811.006
引用本文: 左新龙, 唐文献. 金属-碳纤维增强树脂复合材料复合型柱壳屈曲特性试验及数值[J]. 复合材料学报, 2023, 40(6): 3640-3650. doi: 10.13801/j.cnki.fhclxb.20220811.006
ZUO Xinlong, TANG Wenxian. Experimental and numerical study on buckling behaviour of steel-carbon fiber reinforced polymer hybrid cylindrical shells[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3640-3650. doi: 10.13801/j.cnki.fhclxb.20220811.006
Citation: ZUO Xinlong, TANG Wenxian. Experimental and numerical study on buckling behaviour of steel-carbon fiber reinforced polymer hybrid cylindrical shells[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3640-3650. doi: 10.13801/j.cnki.fhclxb.20220811.006

金属-碳纤维增强树脂复合材料复合型柱壳屈曲特性试验及数值

doi: 10.13801/j.cnki.fhclxb.20220811.006
基金项目: 国家自然科学基金(52171258;52071160)National Natural Science Foundation of China (52171258; 52071160)
详细信息
    通讯作者:

    左新龙,博士,研究方向为深海耐压结构设计与制造 E-mail: 386716254@qq.com

  • 中图分类号: U674.941;TB333

Experimental and numerical study on buckling behaviour of steel-carbon fiber reinforced polymer hybrid cylindrical shells

  • 摘要: 为开展金属-碳纤维增强树脂复合材料(CFRP)复合型柱壳屈曲特性试验及数值研究,制作2组金属-CFRP复合型柱壳及金属柱壳,并对其几何误差检测,试验研究了金属-CFRP复合型柱壳屈曲特性。其次,基于真实几何缺陷,开展了复合型和金属柱壳线性屈曲及非线性屈曲分析,数值与试验具有良好一致性。最后,讨论了CFRP铺层角度、层数对复合型柱壳非线性屈曲载荷影响。结果表明:复合型及金属柱壳试验载荷误差分别为8.29%和6.77%,试验重复性良好;CFRP层可使金属柱壳获得70%的极限载荷增益,并可减弱金属层破坏强度;随着铺设层数增加,复合型柱壳受外压下的铺设角度相应减小,最佳铺设角度为65°~85°,且该范围内,铺设层数影响较小,相同铺设层数下载荷值最大相差7.56%,最小相差为0.57%。

     

  • 图  1  试样结构图:(a) 金属-碳纤维增强树脂复合材料(CFRP)复合型柱壳;(b) 金属柱壳

    Figure  1.  Schematics of the cylinders closed with heavy flanges: (a) Steel-carbon fiber reinforced polymer (CFRP) hybrid cylinder; (b) Steel cylinder

    D—Outer diameter of bung; d—Inner diameter of bung; tc—Thickness of composite layer; ts—Thickness of steel layer; L—Length of cylinder; R—Inner radius of cylinder; b—Depth of sealing groove; a—Width of sealing groove; H—Thickness of inner plug for bung; h—Thickness of outer disk for bung; c—Distance between the sealing groove center and inner disk

    图  2  试样制作流程:(a) 金属-CFRP复合柱壳;(b) 金属柱壳

    Figure  2.  Flowchart of cylinder fabrication: (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    图  3  封盖前柱壳试样:(a) 金属-CFRP复合型柱壳;(b) 金属柱壳

    Figure  3.  Samples used in the hydrostatic test (without flanges): (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    图  4  试验流程图:(a) 测厚;(b) 探伤检测;(c) 外形轮廓扫描;(d) 静水压力舱试验;(e) 去除封盖

    Figure  4.  Experimental flow: (a) Thickness measured ; (b) Flaw detection; (c) Shape scanning; (d) Hydrostatic pressure chamber test; (e) Flanges removed

    图  5  复合柱壳复合材料CFRP层探伤检测(CYL1)

    Figure  5.  Flaw detection of CFRP layer of hybrid cylinder (CYL1)

    图  6  试样外轮廓误差:(a) 金属-CFRP复合型柱壳;(b) 金属柱壳

    Figure  6.  Deviations of the external surfaces of the cylinders from their perfect geometry: (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    图  7  金属-CFRP复合型柱壳压载-时间曲线

    Figure  7.  Pressure-time curves obtained from hydrostatic testing of steel-CFRP hybrid cylinder

    图  8  金属-CFRP复合型柱壳压载-时间曲线

    Figure  8.  Pressure-time curves obtained from hydrostatic testing of steel-CFRP hybrid cylinder

    图  9  金属-CFRP复合型柱壳和金属柱壳试样压溃模态:(a) 试验结果;(b) 数值结果

    Figure  9.  Whole view of collapse modes of samples for steel-CFRP hybrid cylinder and steel cylinders: (a) Experimental; (b) Numerical results

    图  10  复合型柱壳CFRP层裂纹扩展

    Figure  10.  Crack propagation of CFRP layer of hybrid cylinders

    图  11  复合型柱壳和金属柱壳金属层破坏

    Figure  11.  Collapse of steel layer of hybrid cylinders and steel cylinders

    图  12  有限元模型:(a) 金属-CFRP复合型柱壳;(b) 金属柱壳

    Figure  12.  Finite element models: (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    Ux—Displacement in the x-axis direction; Uy—Displacement in the y-axis direction; Uz—Displacement in the z-axis direction

    图  13  试样线性屈曲模态:(a) 金属-CFRP复合型柱壳;(b) 金属柱壳

    Figure  13.  Linear eigenmodes of samples: (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    图  14  复合柱壳非线性屈曲平衡曲线

    Figure  14.  Nonlinear buckling equilibrium curves of hybrid cylinders

    Umax—Maximum displacement

    图  15  金属柱壳非线性屈曲平衡曲线

    Figure  15.  Nonlinear buckling equilibrium curves of steel cylinders

    图  16  铺设角度θ对复合柱壳非线性临界屈曲载荷影响

    Figure  16.  Effect of wrapped angle θ on critical buckling load of hybrid cylinder

    图  17  CFRP层数N对复合型柱壳非线性临界屈曲载荷影响

    Figure  17.  Effect of the number of CFRP layers N on critical buckling load of hybrid cylinder

    表  1  试样几何参数

    Table  1.   Geometric parameters of specimens

    SampleL/mmR/mmts-nominal/mmtc-nominal/mmD/mma/mmb/mmc/mmh/mmH/mm
    CYL128079.51.51.218052.74101020
    CYL228079.51.51.218052.74101020
    CYP128079.51.518052.74101020
    CYP228079.51.518052.74101020
    Notes: ts-nominal—Nominal thickness of steel layer; tc-nominal—Nominal thickness of composite layer;CYL—Steel-composite hybrid cylinder; CYP—Steel cylinder.
    下载: 导出CSV

    表  2  CFRP复合材料的性能

    Table  2.   Material properties of CFRP composites

    ParameterValueParameterValue
    XT 1400.09 E11 115
    XC 580.06 E22 7.70
    YT 44.36 G12 3.72
    YC 133.03 G13 3.72
    S12 45.04 ν12 0.33
    S13 45.04
    Notes: XT, XC—Tensile and compressive strength in fiber direction; E11, E22—Tensile and transverse Young’s modulus; ν12—Poisson's ratio; YT—Transverse tensile strength; YC—Transverse compressive strength; G12, G13—Shear modulus; S12, S13—Shear strength.
    下载: 导出CSV

    表  3  金属-CFRP复合型柱壳和金属柱壳试样壁厚及试验载荷

    Table  3.   Wall thickness and the tested collapse strength of specimens for steel-CFRP hybrid cylinder and steel cylinders

    Samplettotal-min (ts-min)/mmttotal-max (ts-max)/mmttotal-av (ts-av)/mmSt. dev. (ts-St.dev.)Ptest/MPa
    CYL12.369 (1.248)3.052 (1.408)2.579 (1.314)0.0836 (0.0171)3.232
    CYL22.242 (1.284)2.860 (1.350)2.576 (1.305)0.0509 (0.0244)2.964
    CYP11.272 (–)1.378 (–)1.309 (–)0.0192 (–)1.915
    CYP21.244 (–)1.372 (–)1.308 (–)0.0186 (–)1.785
    Notes: ttotal—Total thickness of cylinder; Ptest—Tested collapse strength; ts-av—Metal wall thickness; min—Minimum; max—Maximum; av—Average; St.dev.—Standard deviation.
    下载: 导出CSV

    表  4  金属-CFRP复合型柱壳和金属柱壳试样重力与名义浮力

    Table  4.   Comparison of the buoyancy and gravity of specimens for steel-CFRP hybrid cylinder and steel cylinders

    SampleCYL1CYL2CYP1CYP2
    Buoyancy F/N 69.11 69.11 67.22 67.22
    Gravity G/N 118.12 119.89 109.45 110.21
    Notes: FCYL=(3.14×(79.5+1.2)×(79.5+1.2)×320+3.14×90×90×10×2)×9.8=69.11 N; FCYP=(3.14×79.5×79.5×320+3.14×90×90×10×2)×9.8=67.22 N.
    下载: 导出CSV

    表  5  复合型柱壳和金属柱壳试样网格数、线性屈曲及非线性临界屈曲载荷

    Table  5.   Finite element number, linear eigenvalue and critical buckling load of fabricated CYS and CYH determined through numerical analysis

    SampleS4 RSC8 RPlinear/MPaPnon/MPa
    CYL1855059003.521 (1.089)3.024 (0.936)
    CYL2855059003.352 (1.131)2.751 (0.928)
    CYP183502.170 (1.133)1.946 (1.016)
    CYP283502.108 (1.181)1.845 (1.034)
    Notes: Plinear—Linear buckling load; Pnon—Critical buckling load; Ratio of the calculated values to test values is indicated in parentheses.
    下载: 导出CSV

    表  6  铺设角度θ及层数N对复合型柱壳非线性临界屈曲载荷影响

    Table  6.   Effect of wrapped angle θ and layers N on critical buckling load of hybrid cylinder

    Angle θLayers NLoad P/MPaAngle θLayers NLoad P/MPaAngle θLayers NLoad P/MPa
    ±1522.218±5022.394±6522.512
    62.67863.55164.021
    103.387105.294106.135
    144.329146.964148.067
    185.407188.355189.863
    226.2212210.0992211.962
    266.7902611.9122614.335
    ±3022.259±5522.435±7522.577
    62.92563.72064.239
    103.970105.613106.467
    145.282147.384148.436
    186.318188.9781810.227
    226.9972210.9112212.184
    268.0962612.9062614.565
    ±4522.354±6022.474±8522.617
    63.37963.87964.354
    104.951105.896106.622
    146.534147.760148.570
    187.697189.4891810.286
    229.2292211.5522212.097
    2610.8542613.7292614.252
    下载: 导出CSV
  • [1] MAGNUCKI K, JASION P, RODAK M. Strength and buckling of an untypical dished head of a cylindrical pressure vessel[J]. International Journal of Pressure Vessels and Piping,2018,161:17-21.
    [2] MAGNUCKI K, LEWINSKI J, CICHY R. Strength and buckling problems of dished heads of pressure vessels-contemporary look[J]. Journal of Pressure Vessel Technology, Transactions of the ASME,2018,140(4):1-14.
    [3] BLACHUT J. Buckling of cylinders with imperfect length[C]//Proceedings of the ASME 2013 Pressure Vessels and Piping Conference. Paris, 2013: 1-9.
    [4] BŁACHUT J. Experimental perspective on the buckling of pressure vessel components[J]. Applied Mechanics Reviews,2014,66(1):30-33.
    [5] BLACHUT J, MAGNUCKI K. Strength, stability, and optimization of pressure vessels: Review of selected problems[J]. Applied Mechanics Reviews, 2008, 61(1-6): 0608011–06080133.
    [6] KHAMLICHI A, BEZZAZI M, LIMAM A. Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections[J]. Thin-Walled Structures,2004,42(7):1035-1047. doi: 10.1016/j.tws.2004.03.008
    [7] FATEMI S M, SHOWKATI H, MAALI M. Experiments on imperfect cylindrical shells under uniform external pressure[J]. Thin-Walled Structures,2013,65:14-25. doi: 10.1016/j.tws.2013.01.004
    [8] IFAYEFUNMI O, FADZULLAH S H S M. Buckling behaviour of imperfect axially compressed cylinder with an axial crack[J]. International Journal of Automotive and Mechanical Engineering,2017,14(1):3837-3848. doi: 10.15282/ijame.14.1.2017.3.0313
    [9] BŁACHUT J. Buckling of axially compressed cylinders with imperfect length[J]. Computers and Structures, 2010, 88(5-6): 365–374.
    [10] ROSS C T F. Pressure vessels[M]. Philadelphia: Woodhead Publishing Limited, 2011.
    [11] CHO S R, DO Q T, SHIN H K. Residual strength of damaged ring-stiffened cylinders subjected to external hydrostatic pressure[J]. Marine Structures,2017,56:186-205. doi: 10.1016/j.marstruc.2017.08.005
    [12] CHO S R, MUTTAQIE T, DO Q T, et al. Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure[J]. International Journal of Naval Architecture and Ocean Engineering,2018,10(6):711-729. doi: 10.1016/j.ijnaoe.2017.12.002
    [13] SHIOMITSU D, YANAGIHARA D. Elastic local shell and stiffener-tripping buckling strength of ring-stiffened cylindrical shells under external pressure[J]. Thin-Walled Structures,2020,148:106622.
    [14] WANG X, LI P, WANG R. Study on hydro-forming technology of manufacturing bimetallic CRA-lined pipe[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 373-378.
    [15] WANG Y, YANG L, BAI B, et al. Evaluation of limit deformation behavior in hydro-bulging of the double-layer sheet metal using diffuse and localized instability theories[J]. International Journal of Mechanical Sciences,2019,150:145-153. doi: 10.1016/j.ijmecsci.2018.10.027
    [16] CARVELLI V, PANZERI N, POGGI C. Buckling strength of GFRP under-water vehicles[J]. Composites Part B: Engi-neering,2001,32(2):89-101. doi: 10.1016/S1359-8368(00)00063-9
    [17] ÖZBEK Ö. Axial and lateral buckling analysis of kevlar/epoxy fiber-reinforced composite laminates incorporating silica nanoparticles[J]. Polymer Composites,2021,42(3):1109-1122. doi: 10.1002/pc.25886
    [18] DAVIES P, CHOQUEUSE D, BIGOURDAN B, et al. Compo-site cylinders for deep sea applications: An overview[J]. Journal of Pressure Vessel Technology, Transactions of the ASME,2016,138(6):1-8.
    [19] WEI R, PAN G, JIANG J, et al. An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm[J]. Thin-Walled Structures,2019,142:160-170.
    [20] KARBHARI V M, SEIBLE F. Fiber reinforced composites-advanced materials for the renewal of civil infrastructure[J]. Applied Composite Materials,2000,7(2):95-124.
    [21] TOUTANJI H, DEMPSEY S. Stress modeling of pipelines strengthened with advanced composites materials[J]. Thin-Walled Structures,2001,39(2):153-165. doi: 10.1016/S0263-8231(00)00049-5
    [22] DRAIDI Z, BUI T T, LIMAM A, et al. Buckling behavior of metallic cylindrical shell structures strengthened with CFRP composite[J]. Advances in Civil Engineering,2018(6):423163.
    [23] ZHANG Y, LIU Z, XIN J, et al. The attenuation mechanism of CFRP repaired corroded marine pipelines based on experiments and FEM[J]. Thin-Walled Structures,2021,169:108469.
    [24] KR SINGH D, VILLAMAYOR A, HAZRA A. Numerical and experimental analysis of loctite adhesive composite wrapping on EN 10028 steel pipe[J]. Materials Today: Proceedings,2020,44:4158-4165.
    [25] VUKELIC G, VIZENTIN G, BAKHTIARI R. Failure analysis of a steel pressure vessel with a composite wrap repair proposal[J]. International Journal of Pressure Vessels and Piping,2021,193:104476.
    [26] FAWZIA S, AL-MAHAIDI R, ZHAO X L, et al. Strengthening of circular hollow steel tubular sections using high modulus CFRP sheets[J]. Construction and Building Materials,2007,21(4):839-845. doi: 10.1016/j.conbuildmat.2006.06.014
    [27] TENG J G, HU Y M. Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression[J]. Construction and Building Materials,2007,21(4):827-838. doi: 10.1016/j.conbuildmat.2006.06.016
    [28] VAKILI M, SHOWKATI H. Experimental and numerical investigation of elephant foot buckling and retrofitting of cylindrical shells by FRP[J]. Journal of Composites for Construction,2016,20(4):04015087. doi: 10.1061/(ASCE)CC.1943-5614.0000640
    [29] CHOQUEUSE D, BIGOURDAN B, DEUFF A, et al. Hydrostatic compression behaviour of steel-composite hybrid tubes[C]//ICCM International Conferences on Composite Materials. Edinburgh, 2009: 1-10.
    [30] ZHANG J, ZHU Z, WANG F, et al. Buckling behaviour of double-layer and single-layer stainless steel cylinders under external pressure[J]. Thin-Walled Structures,2021,161:107485. doi: 10.1016/j.tws.2021.107485
    [31] ZHANG J, ZHANG M, CUI W, et al. Elastic-plastic buckling of deep sea spherical pressure hulls[J]. Marine Structures,2018,57:38-51. doi: 10.1016/j.marstruc.2017.09.007
    [32] CARROLL M, ELLYIN F, KUJAWSKI D, et al. The rate-dependent behaviour of ±55° filament-wound glass-fibre/epoxy tubes under biaxial loading[J]. Composites Science and Technology,1995,55(4):391-403. doi: 10.1016/0266-3538(95)00119-0
    [33] LIU W, SODEN P D, KADDOUR A S. Design of end plugs and specimen reinforcement for testing ±55° glass/epoxy composite tubes under biaxial compression[J]. Computers and Structures, 2005, 83(12-13): 976-988.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  723
  • HTML全文浏览量:  365
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-20
  • 录用日期:  2022-08-01
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回