留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属-碳纤维增强树脂复合材料复合型柱壳屈曲特性试验及数值

左新龙 唐文献

左新龙, 唐文献. 金属-碳纤维增强树脂复合材料复合型柱壳屈曲特性试验及数值[J]. 复合材料学报, 2023, 40(6): 3644-3655 doi: 10.13801/j.cnki.fhclxb.20220811.006
引用本文: 左新龙, 唐文献. 金属-碳纤维增强树脂复合材料复合型柱壳屈曲特性试验及数值[J]. 复合材料学报, 2023, 40(6): 3644-3655 doi: 10.13801/j.cnki.fhclxb.20220811.006
ZUO Xinlong, TANG Wenxian. Experimental and numerical study on buckling behaviour of steel-carbon fiber reinforced polymer hybrid cylindrical shells[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3644-3655. doi: 10.13801/j.cnki.fhclxb.20220811.006
Citation: ZUO Xinlong, TANG Wenxian. Experimental and numerical study on buckling behaviour of steel-carbon fiber reinforced polymer hybrid cylindrical shells[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3644-3655. doi: 10.13801/j.cnki.fhclxb.20220811.006

金属-碳纤维增强树脂复合材料复合型柱壳屈曲特性试验及数值

doi: 10.13801/j.cnki.fhclxb.20220811.006
基金项目: 国家自然科学基金(52171258;52071160)National Natural Science Foundation of China (52171258; 52071160)
详细信息
    通讯作者:

    左新龙,博士,研究方向为深海耐压结构设计与制造 E-mail: 386716254@qq.com

  • 中图分类号: U674.941

Experimental and numerical study on buckling behaviour of steel-carbon fiber reinforced polymer hybrid cylindrical shells

  • 摘要: 为开展金属-碳纤维增强树脂复合材料(CFRP)复合型柱壳屈曲特性试验及数值研究,制作2组金属-CFRP复合型柱壳及金属柱壳,并对其几何误差检测,试验研究了金属-CFRP复合型柱壳屈曲特性。其次,基于真实几何缺陷,开展了复合型和金属柱壳线性屈曲及非线性屈曲分析,数值与试验具有良好一致性。最后,讨论了CFRP铺层角度、层数对复合型柱壳非线性屈曲载荷影响。结果表明:复合型及金属柱壳试验载荷误差分别为8.29%和6.77%,试验重复性良好;CFRP层可使金属柱壳获得70%的极限载荷增益,并可减弱金属层破坏强度;随着铺设层数增加,复合型柱壳受外压下的铺设角度相应减小,最佳铺设角度为65°~85°,且该范围内,铺设层数影响较小,相同铺设层数下载荷值最大相差7.56%,最小相差为0.57%。

     

  • 图  1  试样结构图:(a) 金属-碳纤维增强树脂复合材料(CFRP)复合型柱壳;(b) 金属柱壳

    Figure  1.  Schematics of the cylinders closed with heavy flanges: (a) Steel-carbon fiber reinforced polymer (CFRP) hybrid cylinder; (b) Steel cylinder

    D—Outer diameter of bung; d—Inner diameter of bung; tc—Thickness of composite layer; ts—Thickness of steel layer; L—Length of cylinder; R—Inner radius of cylinder; b—Depth of sealing groove; a—Width of sealing groove; H—Thickness of inner plug for bung; h—Thickness of outer disk for bung; c—Distance between the sealing groove center and inner disk

    图  2  试样制作流程:(a) 金属-CFRP复合柱壳;(b) 金属柱壳

    Figure  2.  Flowchart of cylinder fabrication: (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    图  3  封盖前柱壳试样:(a) 金属-CFRP复合型柱壳;(b) 金属柱壳

    Figure  3.  Samples used in the hydrostatic test (without flanges): (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    图  4  试验流程图:(a) 测厚;(b) 探伤检测;(c) 外形轮廓扫描;(d) 静水压力舱试验;(e) 去除封盖

    Figure  4.  Experimental flow: (a) Thickness measured ; (b) Flaw detection; (c) Shape scanning; (d) Hydrostatic pressure chamber test; (e) Flanges removed

    图  5  复合柱壳复合材料CFRP层探伤检测(CYL1)

    Figure  5.  Flaw detection of CFRP layer of hybrid cylinder (CYL1)

    图  6  试样外轮廓误差:(a) 金属-CFRP复合型柱壳;(b) 金属柱壳

    Figure  6.  Deviations of the external surfaces of the cylinders from their perfect geometry: (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    图  7  金属-CFRP复合型柱壳压载-时间曲线

    Figure  7.  Pressure-time curves obtained from hydrostatic testing of steel-CFRP hybrid cylinder

    图  8  金属-CFRP复合型柱壳压载-时间曲线

    Figure  8.  Pressure-time curves obtained from hydrostatic testing of steel-CFRP hybrid cylinder

    图  9  金属-CFRP复合型柱壳和金属柱壳试样压溃模态:(a) 试验结果;(b) 数值结果

    Figure  9.  Whole view of collapse modes of samples for steel-CFRP hybrid cylinder and steel cylinders: (a) Experimental; (b) Numerical results

    图  10  复合型柱壳CFRP层裂纹扩展

    Figure  10.  Crack propagation of CFRP layer of hybrid cylinders

    图  11  复合型柱壳和金属柱壳金属层破坏

    Figure  11.  Collapse of steel layer of hybrid cylinders and steel cylinders

    图  12  有限元模型:(a) 金属-CFRP复合型柱壳;(b) 金属柱壳

    Figure  12.  Finite element models: (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    Ux—Displacement in the x-axis direction; Uy—Displacement in the y-axis direction; Uz—Displacement in the z-axis direction

    图  13  试样线性屈曲模态:(a) 金属-CFRP复合型柱壳;(b) 金属柱壳

    Figure  13.  Linear eigenmodes of samples: (a) Steel-CFRP hybrid cylinder; (b) Steel cylinder

    图  14  复合柱壳非线性屈曲平衡曲线

    Figure  14.  Nonlinear buckling equilibrium curves of hybrid cylinders

    Umax—Maximum displacement

    图  15  金属柱壳非线性屈曲平衡曲线

    Figure  15.  Nonlinear buckling equilibrium curves of steel cylinders

    图  16  铺设角度θ对复合柱壳非线性临界屈曲载荷影响

    Figure  16.  Effect of wrapped angle θ on critical buckling load of hybrid cylinder

    图  17  CFRP层数N对复合型柱壳非线性临界屈曲载荷影响

    Figure  17.  Effect of the number of CFRP layers N on critical buckling load of hybrid cylinder

    表  1  试样几何参数

    Table  1.   Geometric parameters of specimens

    SampleL/mmR/mmts-nominal/
    mm
    tc-nominal/
    mm
    D/mma/mmb/mmc/mmh/mmH/mm
    CYL128079.51.51.218052.74101020
    CYL228079.51.51.218052.74101020
    CYP128079.51.518052.74101020
    CYP228079.51.518052.74101020
    Notes: ts-nominal—Nominal thickness of steel layer; tc-nominal—Nominal thickness of composite layer;CYL—Steel-composite hybrid cylinder; CYP—Steel cylinder.
    下载: 导出CSV

    表  2  CFRP复合材料的性能

    Table  2.   Material properties of CFRP composites

    XT1400.09Young's modulus/GPaE11115
    XC 580.06 E22 7.70
    YT 44.36 G12 3.72
    YC 133.03 G13 3.72
    S12 45.04 Poisson's ratio ν12 0.33
    S13 45.04
    Notes: XT, XC—Tensile and compressive strength in fiber direction; E11, E22—Tensile and transverse Young’s modulus; ν12—Poisson's ratio; YT—Transverse tensile strength; YC—Transverse compressive strength; G12, G13—Shear modulus; S12, S13—Shear strength.
    下载: 导出CSV

    表  3  金属-CFRP复合型柱壳和金属柱壳试样壁厚及试验载荷

    Table  3.   Wall thickness and the tested collapse strength of specimens for steel-CFRP hybrid cylinder and steel cylinders

    Samplettotal-min (ts-min)/mmttotal-max (ts-max)/mmttotal-av (ts-av)/mmSt. dev. (ts-St.dev.)Ptest/MPa
    CYL12.369 (1.248)3.052 (1.408)2.579 (1.314)0.0836 (0.0171)3.232
    CYL22.242 (1.284)2.860 (1.350)2.576 (1.305)0.0509 (0.0244)2.964
    CYP11.272 (–)1.378 (–)1.309 (–)0.0192 (–)1.915
    CYP21.244 (–)1.372 (–)1.308 (–)0.0186 (–)1.785
    Notes: ttotal—Total thickness of cylinder; Ptest—Tested collapse strength; ts-av—Metal wall thickness; min—Minimum; max—Maximum; av—Average; St.dev.—Standard deviation.
    下载: 导出CSV

    表  4  金属-CFRP复合型柱壳和金属柱壳试样重力与名义浮力

    Table  4.   Comparison of the buoyancy and gravity of specimens for steel-CFRP hybrid cylinder and steel cylinders

    SampleCYL1CYL2CYP1CYP2
    Buoyancy F/N 69.11 69.11 67.22 67.22
    Gravity G/N 118.12 119.89 109.45 110.21
    Notes: FCYL=(3.14×(79.5+1.2)×(79.5+1.2)×320+3.14×90×90×10×2)×9.8=69.11 N; FCYP=(3.14×79.5×79.5×320+3.14×90×90×10×2)×9.8=67.22 N.
    下载: 导出CSV

    表  5  复合型柱壳和金属柱壳试样网格数、线性屈曲及非线性临界屈曲载荷

    Table  5.   Finite element number, linear eigenvalue and critical buckling load of fabricated CYS and CYH determined through numerical analysis

    SampleS4 RSC8 RPlinear/MPaPnon/MPa
    CYL1855059003.521 (1.089)3.024 (0.936)
    CYL2855059003.352 (1.131)2.751 (0.928)
    CYP183502.170 (1.133)1.946 (1.016)
    CYP283502.108 (1.181)1.845 (1.034)
    Notes: Plinear—Linear buckling load; Pnon—Critical buckling load; Ratio of the calculated values to test values is indicated in parentheses.
    下载: 导出CSV

    表  6  铺设角度θ及层数N对复合型柱壳非线性临界屈曲载荷影响

    Table  6.   Effect of wrapped angle θ and layers N on critical buckling load of hybrid cylinder

    Load P/MPaLayer N
    Angle θ/(°)261014182226
    ±152.2182.6783.3874.3295.4076.2216.790
    ±302.2592.9253.9705.2826.3186.9978.096
    ±452.3543.3794.9516.5347.6979.22910.854
    ±502.3943.5515.2946.9648.35510.09911.912
    ±552.4353.7205.6137.3848.97810.91112.906
    ±602.4743.8795.8967.7609.48911.55213.729
    ±652.5124.0216.1358.0679.86311.96214.335
    ±752.5774.2396.4678.43610.22712.18414.565
    ±852.6174.3546.6228.57010.28612.09714.252
    下载: 导出CSV
  • [1] MAGNUCKI K, JASION P, RODAK M. Strength and buckling of an untypical dished head of a cylindrical pressure vessel[J]. International Journal of Pressure Vessels and Piping,2018,161:17-21.
    [2] MAGNUCKI K, LEWINSKI J, CICHY R. Strength and buckling problems of dished heads of pressure vessels-contemporary look[J]. Journal of Pressure Vessel Technology, Transactions of the ASME,2018,140(4):1-14.
    [3] BLACHUT J. Buckling of cylinders with imperfect length[C]//Proceedings of the ASME 2013 Pressure Vessels and Piping Conference. Paris, 2013: 1-9.
    [4] BŁACHUT J. Experimental perspective on the buckling of pressure vessel components[J]. Applied Mechanics Reviews,2014,66(1):30-33.
    [5] BLACHUT J, MAGNUCKI K. Strength, stability, and optimization of pressure vessels: Review of selected problems[J]. Applied Mechanics Reviews, 2008, 61(1-6): 0608011–06080133.
    [6] KHAMLICHI A, BEZZAZI M, LIMAM A. Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections[J]. Thin-Walled Structures,2004,42(7):1035-1047. doi: 10.1016/j.tws.2004.03.008
    [7] FATEMI S M, SHOWKATI H, MAALI M. Experiments on imperfect cylindrical shells under uniform external pressure[J]. Thin-Walled Structures,2013,65:14-25. doi: 10.1016/j.tws.2013.01.004
    [8] IFAYEFUNMI O, FADZULLAH S H S M. Buckling behaviour of imperfect axially compressed cylinder with an axial crack[J]. International Journal of Automotive and Mechanical Engineering,2017,14(1):3837-3848. doi: 10.15282/ijame.14.1.2017.3.0313
    [9] BŁACHUT J. Buckling of axially compressed cylinders with imperfect length[J]. Computers and Structures, 2010, 88(5-6): 365–374.
    [10] ROSS C T F. Pressure vessels[M]. Philadelphia: Woodhead Publishing Limited, 2011.
    [11] CHO S R, DO Q T, SHIN H K. Residual strength of damaged ring-stiffened cylinders subjected to external hydrostatic pressure[J]. Marine Structures,2017,56:186-205. doi: 10.1016/j.marstruc.2017.08.005
    [12] CHO S R, MUTTAQIE T, DO Q T, et al. Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure[J]. International Journal of Naval Architecture and Ocean Engineering,2018,10(6):711-729. doi: 10.1016/j.ijnaoe.2017.12.002
    [13] SHIOMITSU D, YANAGIHARA D. Elastic local shell and stiffener-tripping buckling strength of ring-stiffened cylindrical shells under external pressure[J]. Thin-Walled Structures,2020,148:106622.
    [14] WANG X, LI P, WANG R. Study on hydro-forming technology of manufacturing bimetallic CRA-lined pipe[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 373-378.
    [15] WANG Y, YANG L, BAI B, et al. Evaluation of limit deformation behavior in hydro-bulging of the double-layer sheet metal using diffuse and localized instability theories[J]. International Journal of Mechanical Sciences,2019,150:145-153. doi: 10.1016/j.ijmecsci.2018.10.027
    [16] CARVELLI V, PANZERI N, POGGI C. Buckling strength of GFRP under-water vehicles[J]. Composites Part B: Engi-neering,2001,32(2):89-101. doi: 10.1016/S1359-8368(00)00063-9
    [17] ÖZBEK Ö. Axial and lateral buckling analysis of kevlar/epoxy fiber-reinforced composite laminates incorporating silica nanoparticles[J]. Polymer Composites,2021,42(3):1109-1122. doi: 10.1002/pc.25886
    [18] DAVIES P, CHOQUEUSE D, BIGOURDAN B, et al. Compo-site cylinders for deep sea applications: An overview[J]. Journal of Pressure Vessel Technology, Transactions of the ASME,2016,138(6):1-8.
    [19] WEI R, PAN G, JIANG J, et al. An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm[J]. Thin-Walled Structures,2019,142:160-170.
    [20] KARBHARI V M, SEIBLE F. Fiber reinforced composites-advanced materials for the renewal of civil infrastructure[J]. Applied Composite Materials,2000,7(2):95-124.
    [21] TOUTANJI H, DEMPSEY S. Stress modeling of pipelines strengthened with advanced composites materials[J]. Thin-Walled Structures,2001,39(2):153-165. doi: 10.1016/S0263-8231(00)00049-5
    [22] DRAIDI Z, BUI T T, LIMAM A, et al. Buckling behavior of metallic cylindrical shell structures strengthened with CFRP composite[J]. Advances in Civil Engineering,2018(6):423163.
    [23] ZHANG Y, LIU Z, XIN J, et al. The attenuation mechanism of CFRP repaired corroded marine pipelines based on experiments and FEM[J]. Thin-Walled Structures,2021,169:108469.
    [24] KR SINGH D, VILLAMAYOR A, HAZRA A. Numerical and experimental analysis of loctite adhesive composite wrapping on EN 10028 steel pipe[J]. Materials Today: Proceedings,2020,44:4158-4165.
    [25] VUKELIC G, VIZENTIN G, BAKHTIARI R. Failure analysis of a steel pressure vessel with a composite wrap repair proposal[J]. International Journal of Pressure Vessels and Piping,2021,193:104476.
    [26] FAWZIA S, AL-MAHAIDI R, ZHAO X L, et al. Strengthening of circular hollow steel tubular sections using high modulus CFRP sheets[J]. Construction and Building Materials,2007,21(4):839-845. doi: 10.1016/j.conbuildmat.2006.06.014
    [27] TENG J G, HU Y M. Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression[J]. Construction and Building Materials,2007,21(4):827-838. doi: 10.1016/j.conbuildmat.2006.06.016
    [28] VAKILI M, SHOWKATI H. Experimental and numerical investigation of elephant foot buckling and retrofitting of cylindrical shells by FRP[J]. Journal of Composites for Construction,2016,20(4):04015087. doi: 10.1061/(ASCE)CC.1943-5614.0000640
    [29] CHOQUEUSE D, BIGOURDAN B, DEUFF A, et al. Hydrostatic compression behaviour of steel-composite hybrid tubes[C]//ICCM International Conferences on Composite Materials. Edinburgh, 2009: 1-10.
    [30] ZHANG J, ZHU Z, WANG F, et al. Buckling behaviour of double-layer and single-layer stainless steel cylinders under external pressure[J]. Thin-Walled Structures,2021,161:107485. doi: 10.1016/j.tws.2021.107485
    [31] ZHANG J, ZHANG M, CUI W, et al. Elastic-plastic buckling of deep sea spherical pressure hulls[J]. Marine Structures,2018,57:38-51. doi: 10.1016/j.marstruc.2017.09.007
    [32] CARROLL M, ELLYIN F, KUJAWSKI D, et al. The rate-dependent behaviour of ±55° filament-wound glass-fibre/epoxy tubes under biaxial loading[J]. Composites Science and Technology,1995,55(4):391-403. doi: 10.1016/0266-3538(95)00119-0
    [33] LIU W, SODEN P D, KADDOUR A S. Design of end plugs and specimen reinforcement for testing ±55° glass/epoxy composite tubes under biaxial compression[J]. Computers and Structures, 2005, 83(12-13): 976-988.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  148
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-20
  • 录用日期:  2022-08-01
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回