留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚醚砜超细纤维无纺布层间增韧碳纤维/环氧树脂复合材料制备与表征

张代军 包建文 钟翔屿 王德辉 张天骄 陈祥宝

张代军, 包建文, 钟翔屿, 等. 聚醚砜超细纤维无纺布层间增韧碳纤维/环氧树脂复合材料制备与表征[J]. 复合材料学报, 2022, 39(8): 3767-3775. doi: 10.13801/j.cnki.fhclxb.20210909.004
引用本文: 张代军, 包建文, 钟翔屿, 等. 聚醚砜超细纤维无纺布层间增韧碳纤维/环氧树脂复合材料制备与表征[J]. 复合材料学报, 2022, 39(8): 3767-3775. doi: 10.13801/j.cnki.fhclxb.20210909.004
ZHANG Daijun, BAO Jianwen, ZHONG Xiangyu, et al. Preparation and properties of carbon fiber reinforced epoxy resin composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3767-3775. doi: 10.13801/j.cnki.fhclxb.20210909.004
Citation: ZHANG Daijun, BAO Jianwen, ZHONG Xiangyu, et al. Preparation and properties of carbon fiber reinforced epoxy resin composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3767-3775. doi: 10.13801/j.cnki.fhclxb.20210909.004

聚醚砜超细纤维无纺布层间增韧碳纤维/环氧树脂复合材料制备与表征

doi: 10.13801/j.cnki.fhclxb.20210909.004
详细信息
    通讯作者:

    包建文,博士,研究员,航空工业树脂基复合材料首席专家,研究方向为碳纤维增强高韧性树脂基复合材料、耐高温聚酰亚胺树脂基复合材料、液体成型复合材料等高性能复合材料及其成型工艺 E-mail:13693594304@qq.com

  • 中图分类号: TB332

Preparation and properties of carbon fiber reinforced epoxy resin composites interlaminate-toughened by polyethersulfone ultrafine-fiber non-woven fabric

  • 摘要: 为提高环氧树脂基复合材料的冲击后压缩强度,采用更适用于批量化制备的聚醚砜-尼龙6(PES-PA6)共混纺丝溶解剥离法制备PES超细纤维无纺布,并将该无纺布用于碳纤维增强环氧树脂基复合材料的层间增韧,通过测试复合材料增韧前后的I型层间断裂韧性(GIC)、II型层间断裂韧性(GIIC)和冲击后压缩强度(CAI),并表征复合材料层间断裂微观形貌,研究该无纺布对复合材料层间韧性的影响与复合材料超细纤维无纺布层间增韧机制。结果表明,采用无纺布层间增韧环氧树脂复合材料后,其GIC性能由增韧前的289 J/m2提升到增韧后的312 J/m2GIIC性能由增韧前的1391 J/m2提升到增韧后的3649 J/m2。试样冲击后损伤面积由增韧前的1050 mm2降低到增韧后的204 mm2,相应的冲击后压缩强度由增韧前的228 MPa提升到增韧后307 MPa。

     

  • 图  1  碳纤维增强环氧树脂基复合材料I型层间断裂韧性(GIC)试样

    Figure  1.  Carbon fiber reinforced epoxy resin composite specimen for test of interlaminar fracture toughness under mode I (GIC)

    图  2  碳纤维增强环氧树脂基复合材料II型层间断裂韧性(GIIC)试样

    Figure  2.  Carbon fiber reinforced epoxy resin composite specimen for test of interlaminar fracture toughness under mode II (GIIC)

    P—Applied force

    图  3  聚醚砜树脂-尼龙6树脂(PES-PA6)共混纤维照片 (a)与微观形貌 (b)

    Figure  3.  Photograph (a) and microtopography (b) of polyethersulfone-nylon 6 resin (PES-PA6) blended fibers

    图  4  PES-PA6共混纤维经溶剂刻蚀后微观形貌:(a) N-甲基吡咯烷酮 (NMP);(b) 甲酸

    Figure  4.  Microtopographies of PES-PA6 blended fibers after solvent etching: (a) N-methylpyrrolidone (NMP); (b) Formic acid

    图  5  PES超细纤维(PES-f)无纺布照片 (a) 与微观形貌 (b)

    Figure  5.  Photograph (a) and microtopography (b) of PES ultrafine fiber (PES-f) non-woven fabric

    图  6  PES-f无纺布层间增韧环氧树脂基复合材料增韧前后复合材料I型 (GIC) (a) 和II型层间断裂韧性 (GIIC) (b)

    Figure  6.  Interlaminar fracture toughness under mode I(GIC) (a) and mode II(GIIC) (b) of PES-f non-woven interlayer toughened epoxy resin base before and after toughening

    图  7  PES-f无纺布层间增韧环氧树脂基复合材料层间微观形貌

    Figure  7.  Interlayer micromorphology of PES-f non-woven interlayer toughened epoxy resin base composites

    图  8  PES-f无纺布层间增韧环氧树脂基复合材料GIC试样断口微观形貌

    Figure  8.  Fracture micromorphologies of PES-f non-woven interlayer toughened epoxy resin base composite specimens for GIC test

    图  9  PES-f无纺布层间增韧环氧树脂基复合材料GIIC试样断口微观形貌

    Figure  9.  Fracture micromorphologies of PES-f non-woven interlayer toughened epoxy resin base composite specimens for GIIC test

    图  10  四氢呋喃(THF)刻蚀后PES-f无纺布层间增韧环氧树脂基复合材料GIIC试样断口微观形貌

    Figure  10.  Fracture micromorphologies of PES-f non-woven interlayer toughened epoxy resin base specimens under mode II after etching with tetrahydrofuran (THF)

    图  11  PES-f无纺布层间增韧环氧树脂基复合材料II型层间断裂韧性裂纹扩展过程中的几何效应

    Figure  11.  Geometrical restrictions of interlaminar crack propagation for PES-f non-woven interlayer toughened epoxy resin base composites under mode II

    图  12  PES-f无纺布层间增韧环氧树脂基复合材料层合板冲击后超声C扫描图像

    Figure  12.  C-scan images of PES-f non-woven interlayer toughened epoxy resin base composite laminates after impact

    图  13  PES-f无纺布层间增韧环氧树脂基复合材料层合板冲击后压缩强度测试过程中损伤形式

    Figure  13.  Damage modes of PES-f non-woven interlayer toughened epoxy resin base composite laminates during post-impact compression test

    表  1  碳纤维增强环氧树脂基复合材料层合板铺层方案

    Table  1.   Placement scheme of carbon fiber reinforced epoxy resin composite laminates

    SampleLaying designRemarks
    GC-Base [0]22 and insert a 25 µm polytetrafluoroethylene (PTFE) film into the middle layer of the laminate as the initial delamination pre-crack Used to prepare GIC and GIIC samples
    GC-PES [0]11/PES-f/[0]11 and insert a 25 µm PTFE film into the middle layer of the laminate as the initial delamination pre-crack
    CAI-Base [45/0/–45/90]3s Used to prepare compressive strength after impact samples
    CAI-PES [45/0/–45/90]3s and insert a layer of PES-f non-woven fabric between each layer of prepreg
    Notes: GIC—Interlaminar fracture toughness under mode I; GIIC—Interlaminar fracture toughness under mode II; CAI—Compressive strength after impact; PES—Polyethersulfone; PES-f—PES ultrafine fiber; GC—Serial number.
    下载: 导出CSV

    表  2  PES-f无纺布层间增韧环氧树脂基复合材料层合板冲击后损伤投影面积及冲击后压缩强度(CAI)结果对比

    Table  2.   Damage area and compression after impact (CAI) results of PES-f non-woven interlayer toughened epoxy resin based composite laminates

    SampleDamage area/mm2Maximum force/kNCAI/MPa
    CAI-Base Average 1050 92.5 228
    Standard deviation 70.34 8.23 19.6
    CAI-PES Average 204 134 307
    Standard deviation 32.96 9.07 17.7
    下载: 导出CSV
  • [1] 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6):2-12.

    CHEN Xiangbao, ZHANG Baoyan, XING Liying. Application and development of advanced polymer matrix composites[J]. Materials China,2009,28(6):2-12(in Chinese).
    [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [3] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Appli-cation of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [4] ENDO M. Composites for aircraft and aerospace application[J]. Sen'I Gakkaishi,2014,70(9):508-511. doi: 10.2115/fiber.70.P-508
    [5] 包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8):33-48. doi: 10.11868/j.issn.1001-4381.2020.000208

    BAO Jianwen, ZHONG Xiangyu, ZHANG Daijun, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China[J]. Journal of Materials Engineering,2020,48(8):33-48(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000208
    [6] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. doi: 10.3321/j.issn:1000-6893.2008.03.011

    CHEN Shaojie. Composite technology and large aircraft[J]. Acta Aeronautica et Astronautic Sinica,2008,29(3):605-610(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.011
    [7] 刘代军, 陈亚莉. 先进树脂基复合材料在航空工业中的应用[J]. 材料工程, 2008(S1):194-198.

    LIU Daijun, CHEN Yali. Application of advanced polymer matrix composites in aviation industry[J]. Journal of Materials Engineering,2008(S1):194-198(in Chinese).
    [8] 乔海涛, 梁滨, 张军营, 等. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46(12):38-47. doi: 10.11868/j.issn.1001-4381.2018.000297

    QIAO Haitao, LIANG Bin, ZHANG Junying, et al. Development and application of adhesive materials for advanced composite bonding[J]. Journal of Materials Engineering,2018,46(12):38-47(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000297
    [9] 张宗华, 刘刚, 张晖, 等. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014(9):39-44. doi: 10.11868/j.issn.1001-4381.2014.09.007

    ZHANG Zonghua, LIU Gang, ZHANG Hui, et al. Influence of nano-alumina particles on glass transition temperature of high-performance epoxy resin[J]. Journal of Materials Engineering,2014(9):39-44(in Chinese). doi: 10.11868/j.issn.1001-4381.2014.09.007
    [10] 刘刚, 张代军, 张晖, 等. 纳米粒子改性环氧树脂及其复合材料力学性能研究[J]. 材料工程, 2010(1):47-53. doi: 10.3969/j.issn.1001-4381.2010.01.011

    LIU Gang, ZHANG Daijun, ZHANG Hui, et al. Mechanical properties of nanoparticles modified epoxy matrix and composites[J]. Journal of Materials Engineering,2010(1):47-53(in Chinese). doi: 10.3969/j.issn.1001-4381.2010.01.011
    [11] 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285.

    DONG Huimin, YI Xiaosu, AN Xuefeng, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica,2014,31(2):273-285(in Chinese).
    [12] 姚佳伟, 刘梦瑶, 牛一凡. PEK-C膜层间增韧碳纤维/环氧树脂复合材料的力学性能[J]. 复合材料学报, 2019, 36(5):1083-1091.

    YAO Jiawei, LIU Mengyao, NIU Yifan. Mechanical properties of PEK-C interlayer toughened carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2019,36(5):1083-1091(in Chinese).
    [13] 张朋, 刘刚, 胡晓兰, 等. 结构化增韧层增韧RTM复合材料性能[J]. 复合材料学报, 2012 , 29(4):1-9.

    ZHANG Peng, LIU Gang, HU Xiaolan, et al. Properties of toughened RTM composites by structural toughening layer[J]. Acta Materiae Compositae Sinica,2012 , 29(4):1-9(in Chinese).
    [14] 董慧民, 闫丽, 安学锋, 等. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1):41-47. doi: 10.11868/j.issn.1001-4381.2018.000960

    DONG Huimin, YAN Li, AN Xuefeng, et al. Low velocity impact response and post impact compression behaviour of ESTM-fabric/3266 composites[J]. Journal of Materials Engineering,2020,48(1):41-47(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000960
    [15] BRUGO T, MINAK G, ZUCCHELLI A, et al. An investigation on the fatigue based delamination of woven carbon-epoxy composite laminates reinforced with polyamide nano-fibers[J]. Procedia Engineering,2015,109:65-72. doi: 10.1016/j.proeng.2015.06.208
    [16] SHIVAKUMAR K, LINGAIAH S, CHEN H, et al. Polymer nanofabric interleaved composite laminates[J]. AIAA Journal,2009,47(7):1723-1729.
    [17] DAELEMANS L, SAM V, DE B I, et al. Nanofibre bridging as a toughening mechanism in carbon/epoxy composite lami-nates interleaved with electrospun polyamide nano-fibrous veils[J]. Composites Science and Technology,2015,117:244-256. doi: 10.1016/j.compscitech.2015.06.021
    [18] American Society for Testing and Materials. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D 5528[S]. West Conshohocken: American Society for Testing and Materials International, 2009.
    [19] 中国航空工业总公司. 碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法: HB 7403—96[S]. 北京: 中国航空工业总公司, 1997.

    Aviation Industry Corporation of China. Test method for mode II interlaminar fracture toughness of carbon fiber-reinforced polymer matrix composites: HB 7403—96[S]. Beijing: Aviation Industry Corporation of China, 1997(in Chinese).
    [20] American Society for Testing and Materials. Standard test for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D 7136[S]. West Conshohocken: American Society for Testing and Materials International, 2020.
    [21] American Society for Testing and Materials. Standard test method I for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D 7137[S]. West Conshohocken: American Society for Testing and Materials International, 2017.
    [22] VOLKER A, DALE G, MICHAEL S, et al. Interlaminar crack growth in third-generation thermoset prepreg system[J]. Polymer,1993,34(4):907-909. doi: 10.1016/0032-3861(93)90379-O
    [23] RECKER H, ALTSTADT V, EBERLE W, et al. Toughened thermosets for damage tolerant carbon fiber reinforced composites[J]. SAMPE Journal, 1990, 26(2): 73-78.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1025
  • HTML全文浏览量:  486
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-08-18
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回