留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强热塑性复合材料的制备与性能研究进展

曹建凡 白树林 秦文贞 严毅

曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3): 1229-1247. doi: 10.13801/j.cnki.fhclxb.20220815.001
引用本文: 曹建凡, 白树林, 秦文贞, 等. 碳纤维增强热塑性复合材料的制备与性能研究进展[J]. 复合材料学报, 2023, 40(3): 1229-1247. doi: 10.13801/j.cnki.fhclxb.20220815.001
CAO Jianfan, BAI Shulin, QIN Wenzhen, et al. Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1229-1247. doi: 10.13801/j.cnki.fhclxb.20220815.001
Citation: CAO Jianfan, BAI Shulin, QIN Wenzhen, et al. Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1229-1247. doi: 10.13801/j.cnki.fhclxb.20220815.001

碳纤维增强热塑性复合材料的制备与性能研究进展

doi: 10.13801/j.cnki.fhclxb.20220815.001
详细信息
    通讯作者:

    曹建凡,硕士,工程师,研究方向为纤维增强树脂基复合材料 E-mail:jfcao03@163.com

  • 中图分类号: TB332

Research progress on preparation and properties of carbon fiber reinforced thermoplastic composites

  • 摘要: 碳纤维增强热塑性复合材料(CRTP)因其具有众多优点而在航空航天、轨道交通、国防军工和风力发电等领域受到广泛的关注。本文总结了近年来国内外关于CRTP制备技术的研究进展,主要从预浸料制备工艺、碳纤维(CF)表面改性技术及CRTP成型工艺3个方面进行阐述,并详细介绍了不同预浸料制备工艺、CF表面改性技术和CRTP成型工艺的优缺点及对所制备CRTP性能的影响;最后对预浸料制备工艺、CF表面改性技术和CRTP成型工艺的发展方向进行了展望。

     

  • 图  1  碳纤维(CF)增强热塑性复合材料(CRTP)预浸料制备技术

    Figure  1.  Preparation technology of prepreg for carbon fiber (CF) reinforced thermoplastic composites (CRTP)

    图  2  溶液浸渍法制备预浸料流程图

    Figure  2.  Diagram for preparation of prepreg by solution impregnation

    图  3  熔融浸渍法制备预浸料流程图

    Figure  3.  Diagram for preparation of prepreg by melt impregnation

    图  4  反应链增长浸渍法原理图

    Figure  4.  Schematic of reactive chain growth impregnation

    图  5  粉末浸渍法制备预浸料流程图

    Figure  5.  Diagram for preparation of prepreg by powder impregnation

    图  6  薄膜叠层法示意图

    Figure  6.  Schematic diagram of lamination recombination

    图  7  纤维混编法示意图

    Figure  7.  Schematic diagram of fiber blending

    图  8  CF/聚苯硫醚(PPS)混编织物 (a) 及其复合板材 (b)

    Figure  8.  Hybrid fabric (a) and composite sheet (b) of CF/polyphenylene sulfide (PPS)

    图  9  CF (a) 与氧化改性CF (b) 的微观形貌

    Figure  9.  Micromorphologies of CF (a) and oxidation-modified CF (b)

    图  10  含碳纳米管(CNTs)上浆剂的制备及CF上浆过程示意图

    Figure  10.  Schematic diagram of preparation of carbon nanotubes (CNTs)-containing sizing agent and and sizing process of CF

    图  11  CF接枝改性示意图

    Figure  11.  Schematic diagram of graft modification for CF

    图  12  “鱼鳞”结构形成机制示意图

    Figure  12.  Formation mechanism illustration of “fish-scale” structure

    CNT—Carbon nanotube; PEI—Polyether imide; PA66—Polyamide 66; τ—Stress

    图  13  改性CF/聚碳酸酯(PC)复合材料制备示意图

    Figure  13.  Schematic diagram of the preparation for modified CF/polycarbonate (PC) composite

    P—Pre-impregnated

    图  14  复合改性CF及复合材料的制备流程示意图

    Figure  14.  Schematic diagram of the preparation process of compound modified CF and its composite

    LiAlH4—Lithium aluminium hydride; SCAs—Graft silane coupling agent; IPN—Interpenetrating polymer network; PPS—Polyphenylene sulfide; THF—Tetrahydrofuran

    图  15  自动铺放成型工艺示意图

    Figure  15.  Schematic diagram of automatic placement molding process

    表  1  不同氧化改性CRTP的拉伸性能

    Table  1.   Tensile properties of different oxidation-modified CRTP

    SampleTensile
    strength/MPa
    Tensile
    modulus/GPa
    CF/PPS 649 25.4
    CF/PPS (gas-phase oxidation) 329 37.8
    CF/PPS (liquid-phase oxidation) 1400 52.4
    CF/PSU 629 33.1
    CF/PSU (gas-phase oxidation) 346 36.3
    CF/PSU (liquid-phase oxidation) 920 41.6
    Note: PSU—Polysulfone resin.
    下载: 导出CSV

    表  2  不同成型工艺制备的复合材料之间的性能比较

    Table  2.   Comparison of properties between the composites prepared by different processing technology

    Processing
    technology
    SampleFiber
    content
    Void
    content
    Tensile
    strength/MPa
    Tensile
    modulus/GPa
    Flexural
    strength/MPa
    Short beam sheer
    strength/MPa
    Ref.
    InjectionCF-ABS/PC20wt%71.7106.3[50]
    pultrusion20wt%78.1114.3
    CompressionCF/PA635vol%0.3%768.480.4[66]
    3D printing29vol%4.0%604.373.1
    CompressionCF/PEKK61.8vol%135.7[67]
    automated placement119.0
    InjectionCF/ABS10wt%140200[68]
    3D printing10wt%127147
    Notes: ABS/PC—Acrylonitrile butadiene styrene/polycarbonate; PA6—Polyamide 6; PEKK—Polyetherketoneketone.
    下载: 导出CSV
  • [1] SHI X H, LI X L, LI Y M, et al. Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review[J]. Composites Part B: Engineering,2022,233:109663.
    [2] 王振林, 孙浩, 何芳, 等. 纤维增强树脂基复合材料制造技术研究进展[J]. 化学与粘合, 2020, 42(5):377-382. doi: 10.3969/j.issn.1001-0017.2020.05.017

    WANG Zhenlin, SUN Hao, HE Fang, et al. Research progress in manufacturing technology of fiber reinforced resin based composites[J]. Chemistry and Adhesion,2020,42(5):377-382(in Chinese). doi: 10.3969/j.issn.1001-0017.2020.05.017
    [3] WAGHMARE S, SHELARE S, AGLAWE K, et al. A mini review on fibre reinforced polymer composites[J]. Materials Today: Proceedings,2022,54:682-689. doi: 10.1016/j.matpr.2021.10.379
    [4] 刘彬, 安卫龙, 倪楠楠. 国外热塑性复合材料工程应用现状[J]. 航空制造技术, 2021, 64(22):80-90.

    LIU Bin, AN Weilong, NI Nannan. Application status of thermoplastic composite materials in foreign engineering[J]. Aeronautical Manufacturing Technology,2021,64(22):80-90(in Chinese).
    [5] 许云鹏, 颜春, 刘东, 等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程, 2020(8):123-128. doi: 10.3969/j.issn.1003-0999.2020.08.019

    XU Yunpeng, YAN Chun, LIU Dong, et al. Progress in preparation technology of continuous fiber reinforced thermoplastic prepregs[J]. Composites Science and Engineering,2020(8):123-128(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.08.019
    [6] 张琦, 张师军. 碳纤维增强热塑性复合材料的研究进展[J]. 石油化工, 2020, 49(12):1153-1164. doi: 10.3969/j.issn.1000-8144.2020.12.001

    ZHANG Qi, ZHANG Shijun. Research development on carbon fiber reinforced thermoplastic composites[J]. Petrochemical Technology,2020,49(12):1153-1164(in Chinese). doi: 10.3969/j.issn.1000-8144.2020.12.001
    [7] BROWN K R, HARRELL T M, SKRZYPCZAK L, et al. Carbon fibers derived from commodity polymers: A review[J]. Carbon,2022,196:422-439. doi: 10.1016/j.carbon.2022.05.005
    [8] LI N, ZONG L, WU Z, et al. Compatibilization effect of aminated poly(phthalazinone ether ketone)s in carbon fiber-reinforced copoly(phthalazinone ether sulfone)s composites[J]. Polymer Composites,2018,39(11):4139-4147. doi: 10.1002/pc.24482
    [9] 周振君, 张宁, 王临江, 等. 连续纤维增强聚醚砜复合材料制备及性能研究[J]. 复合材料科学与工程, 2020(3):70-74. doi: 10.3969/j.issn.1003-0999.2020.03.011

    ZHOU Zhenjun, ZHANG Ning, WANG Linjiang, et al. Preparation and properties of continuous fiber reinforced polyethersulfone composites[J]. Composites Science and Engineering,2020(3):70-74(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.03.011
    [10] 滕凌虹, 曹伟伟, 朱波, 等. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49(2):42-53. doi: 10.11868/j.issn.1001-4381.2020.000358

    TENG Linghong, CAO Weiwei, ZHU Bo, et al. Research progress in the preparation of fiber reinforced thermoplastic resin prepreg[J]. Journal of Materials Engineering,2021,49(2):42-53(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000358
    [11] 邢海妮, 谭洪生, 郑立杭, 等. 连续碳纤维增强聚乳酸复合材料的研究[J]. 广州化工, 2020, 48(3):55-56, 83. doi: 10.3969/j.issn.1001-9677.2020.03.022

    XING Haini, TAN Hongsheng, ZHENG Lihang, et al. Study on continuous carbon fiber reinforced polylactic acid composites[J]. Guangzhou Chemical Industry,2020,48(3):55-56, 83(in Chinese). doi: 10.3969/j.issn.1001-9677.2020.03.022
    [12] 马晓敏, 邢立学, 谭洪生, 等. 连续碳纤维增强PA66复合材料的结晶与力学性能[J]. 中国塑料, 2019, 33(2):40-46, 61.

    MA Xiaomin, XING Lixue, TAN Hongsheng, et al. Study on crystallization and mechanical properties of continuous carbon-fiber-reinforced PA66 composites[J]. China Plastics,2019,33(2):40-46, 61(in Chinese).
    [13] IRISAWA T, SHIBATA M, YAMAMOTO T, et al. Effects of carbon nanofibers on carbon fiber reinforced thermoplastics made with in situ polymerizable polyamide 6[J]. Composites Part A: Applied Science and Manufacturing,2020,138:106051. doi: 10.1016/j.compositesa.2020.106051
    [14] CHO B G, LEE J E, HWANG S H, et al. Enhancement in mechanical properties of polyamide 66-carbon fiber composites containing graphene oxide-carbon nanotube hybrid nanofillers synthesized through in situ interfacial polymerization[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105938. doi: 10.1016/j.compositesa.2020.105938
    [15] CHEN J, ZHANG T, WANG K, et al. Multiscale enhancement behavior of nano-silica modified CF/PEEK compo-sites prepared by wet powder impregnation[J]. Polymer Composites,2019,40(3):1187-1197. doi: 10.1002/pc.24830
    [16] 王志平, 顾子琛. 静电粉末流化法碳纤维/聚苯硫醚预浸料的制备及性能表征[J]. 塑料工业, 2019, 47(10):22-26, 60.

    WANG Zhiping, GU Zichen. Preparation and characterization of carbon fiber/polyphenylene sulfide prepreg by powder fluidized impregnation[J]. China Plastics Industry,2019,47(10):22-26, 60(in Chinese).
    [17] HASSAN E A M, GE D, ZHU S, et al. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105613. doi: 10.1016/j.compositesa.2019.105613
    [18] SORRENTINO L, SILVA DE VASCONCELLOS D, D'AURIA M, et al. Flexural and low velocity impact characterization of thermoplastic composites based on PEN and high performance woven fabrics[J]. Polymer Composites,2018,39(8):2942-2951. doi: 10.1002/pc.24293
    [19] 张佳新, 梅启林. CF/PPS编织复合材料的制备及力学性能研究[J]. 复合材料科学与工程, 2020(1):76-81. doi: 10.3969/j.issn.1003-0999.2020.01.012

    ZHANG Jiaxin, MEI Qilin. Preparation and mechanical properties of CF /PPS knitted composites[J]. Composites Science and Engineering,2020(1):76-81(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.01.012
    [20] ONO M, YAMANE M, TANOUE S, et al. Mechanical properties of thermoplastic composites made of commingled carbon fiber/nylon fiber[J]. Polymers,2021,13(19):3206. doi: 10.3390/polym13193206
    [21] DHARMASIRI B, RANDALL J, YIN Y, et al. Carbon reinforced carbon fibers: Using surface modification as a route to enhanced physical performance[J]. Composites Science and Technology,2022,218:109217. doi: 10.1016/j.compscitech.2021.109217
    [22] HENDLMEIER A, SIMON Ž, CHUTANI A, et al. Generating short carbon fiber polyamide-6 composites from continuous carbon fiber—A preliminary examination of surface treatment and sizing effects[J]. Composites Part A: Applied Science and Manufacturing,2020,138:106058. doi: 10.1016/j.compositesa.2020.106058
    [23] CHUKOV D I, NEMATULLOEV S G, TСHERDYNTSEV V V, et al. Structure and properties of polysulfone filled with modified twill weave carbon fabrics[J]. Polymers,2019,12(1):50. doi: 10.3390/polym12010050
    [24] YAO L, LU Y, LI Z, et al. Effect of surface post-oxidation of epoxy-sized carbon fibre on interlaminar shear strength of the polyamide 66 composites[J]. Composite Interfaces,2021,28(8):749-770. doi: 10.1080/09276440.2020.1802166
    [25] TIAN H, YAO Y, LIU D, et al. Enhanced interfacial adhesion and properties of polypropylene/carbon fiber composites by fiber surface oxidation in presence of a compatibilizer[J]. Polymer Composites,2019,40(S1):E654-E662.
    [26] CHUKOV D, NEMATULLOEV S, ZADOROZHNYY M, et al. Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites[J]. Polymers,2019,11(4):684. doi: 10.3390/polym11040684
    [27] 徐胜, 黄雪飞, 杨斌. 碳纤维表面处理对碳纤维/聚丙烯复合材料界面结合性能的影响[J]. 复合材料科学与工程, 2021(1):65-71. doi: 10.3969/j.issn.1003-0999.2021.01.010

    XU Sheng, HUANG Xuefei, YANG Bin. Effect of carbon fiber surface treatment on interfacial bonding performance of carbon fiber reinforced polypropylene composites[J]. Composites Science and Engineering,2021(1):65-71(in Chinese). doi: 10.3969/j.issn.1003-0999.2021.01.010
    [28] 张为苏, 杨常玲, 姚莉丽, 等. 炭纤维表面性质及上浆剂对炭纤维聚碳酸酯复合材料界面性能的影响[J]. 新型炭材料, 2019, 34(1):75-83.

    ZHANG Weisu, YANG Changling, YAO Lili, et al. Effect of surface properties and sizing agents on interfacial properties of carbon fiber reinforced polycarbonate composites[J]. New Carbon Materials,2019,34(1):75-83(in Chinese).
    [29] SUN Z, GUO F L, WU X P, et al. Experimental and simulation investigations of the effect of hybrid GO-thermoplastic polyimide sizing on the temperature-dependent tensile behavior of short carbon fiber/polyetherimide composites[J]. Composites Science and Technology,2022,218:109166. doi: 10.1016/j.compscitech.2021.109166
    [30] HU J, YAN F, LIU H, et al. Water-based PEKC-COOH sizing agent for enhancing the interfacial adhesion of carbon fiber/polyether-ether-ketone composites[J]. Composites Part B: Engineering,2021,225:109279. doi: 10.1016/j.compositesb.2021.109279
    [31] HASSAN E A M, YANG L, ELAGIB T H H, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B: Engineering,2019,171:70-77. doi: 10.1016/j.compositesb.2019.04.015
    [32] LIU Y, LI L, WANG J, et al. Effect of carbon nanotube addition in two sizing agents on interfacial properties of carbon fiber/polycarbonate composites[J]. New Carbon Materials,2021,36(3):639-648. doi: 10.1016/S1872-5805(21)60035-5
    [33] YAN T, YAN F, LI S, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent[J]. Composites Part B: Engineering,2020,199:108258. doi: 10.1016/j.compositesb.2020.108258
    [34] MA Z, PU Y, HUANG Y, et al. Ionic aqueous quaternized poly (amide-imide) sizing on CF for improving interface and mechanical performance of CFRTP[J]. Composites Communications,2022,33:101233. doi: 10.1016/j.coco.2022.101233
    [35] EYCKENS D J, JARVIS K, BARLOW A J, et al. Improving the effects of plasma polymerization on carbon fiber using a surface modification pretreatment[J]. Composites Part A: Applied Science and Manufacturing,2021,143:106319. doi: 10.1016/j.compositesa.2021.106319
    [36] ALTAY L, BOZACI E, ATAGUR M, et al. The effect of atmospheric plasma treatment of recycled carbon fiber at different plasma powers on recycled carbon fiber and its polypropylene composites[J]. Journal of Applied Polymer Science,2019,136(9):47131. doi: 10.1002/app.47131
    [37] LEE E, LEE C, CHUN Y S, et al. Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites[J]. Composites Part B: Engineering,2017,116:451-458. doi: 10.1016/j.compositesb.2016.10.088
    [38] WANG S, ZHANG S, YANG Y, et al. Direct electrochemical grafting of crystalline PAEK macromolecule on carbon fiber to enhance the interfacial properties of PEEK/CF composites[J]. Composites Science and Technology,2022,220:109262.
    [39] CHEN J, XU H, LIU C, et al. The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites[J]. Composites Science and Technology,2018,168:20-27. doi: 10.1016/j.compscitech.2018.09.007
    [40] 李志强, 王发阳, 王士华, 等. 改性纳米SiO2对碳纤维表面和界面性能的影响[J]. 高科技纤维与应用, 2020, 45(4):41-48. doi: 10.3969/j.issn.1007-9815.2020.04.007

    LI Zhiqiang, WANG Fayang, WANG Shihua, et al. Effect of modified nano SiO2 to carbon fiber surface and interface performance[J]. Hi-Tech Fiber and Application,2020,45(4):41-48(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.04.007
    [41] WU Y, DHAMODHARAN D, WANG Z, et al. Effect of electrophoretic deposition followed by solution pre-impregnated surface modified carbon fiber-carbon nanotubes on the mechanical properties of carbon fiber reinforced polycarbonate composites[J]. Composites Part B: Engineering,2020,195:108093. doi: 10.1016/j.compositesb.2020.108093
    [42] HU C, LIAO X, QIN Q H, et al. The fabrication and characterization of high density polyethylene composites reinforced by carbon nanotube coated carbon fibers[J]. Composites Part A: Applied Science and Manufacturing,2019,121:149-156. doi: 10.1016/j.compositesa.2019.03.027
    [43] DONG Y, YU T, WANG X, et al. Improved interfacial shear strength in polyphenylene sulfide/carbon fiber compo-sites via the carboxylic polyphenylene sulfide sizing agent[J]. Composites Science and Technology,2020,190:108056. doi: 10.1016/j.compscitech.2020.108056
    [44] WANG S, YANG Y, MU Y, et al. Synergy of electrochemical grafting and crosslinkable crystalline sizing agent to enhance the interfacial strength of carbon fiber/PEEK composites[J]. Composites Science and Technology,2021,203:108562. doi: 10.1016/j.compscitech.2020.108562
    [45] HU J, LI F, WANG B, et al. A two-step combination strategy for significantly enhancing the interfacial adhesion of CF/PPS composites: The liquid-phase oxidation followed by grafting of silane coupling agent[J]. Composites Part B: Engineering,2020,191:107966. doi: 10.1016/j.compositesb.2020.107966
    [46] 赵乐, 陆承志, 王少飞, 等. 碳纤维增强聚苯硫醚复合材料结晶结构与性能调控[J]. 工程塑料应用, 2022, 50(1):72-77. doi: 10.3969/j.issn.1001-3539.2022.01.013

    ZHAO Le, LU Chengzhi, WANG Shaofei, et al. Control of crystal structure and performances of carbon fiber reinforced polyphenylene sulfide composite[J]. Engineering Plastics Application,2022,50(1):72-77(in Chinese). doi: 10.3969/j.issn.1001-3539.2022.01.013
    [47] 张承启, 彭小红, 包海峰. 碳纤维-尼龙6混编织物复合材料的制备及性能[J]. 复合材料学报, 2019, 36(11):2487-2494.

    ZHANG Chengqi, PENG Xiaohong, BAO Haifeng. Preparation and properties of carbon fiber-nylon 6 mixed braid fabric composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2487-2494(in Chinese).
    [48] 刘树文, 邱军, 刘文君, 等. 碳纤维增强尼龙66低磨耗复合材料制备及性能研究[J]. 塑料工业, 2021, 49(9):34-38, 48. doi: 10.3969/j.issn.1005-5770.2021.09.007

    LIU Shuwen, QIU Jun, LIU Wenjun, et al. Study on preparation and properties of carbon fiber reinforced nylon 66 low wear composite[J]. China Plastics Industry,2021,49(9):34-38, 48(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.09.007
    [49] WANG T, JIAO Y, MI Z, et al. PEEK composites with polyimide sizing SCF as reinforcement: Preparation, characterization, and mechanical properties[J]. High Performance Polymers,2020,32(4):383-393. doi: 10.1177/0954008319867383
    [50] RYU S C, KIM J Y, CHO C, et al. Improvements of the electrical conductivity and EMI shielding efficiency for the polycarbonate/ABS/carbon fiber composites prepared by pultrusion process[J]. Macromolecular Research,2020,28(2):118-125. doi: 10.1007/s13233-020-8024-1
    [51] BUDIYANTORO C, ROCHARDJO H S B, NUGROHO G. Effects of processing variables of extrusion-pultrusion method on the impregnation quality of thermoplastic compo-site filaments[J]. Polymers,2020,12(12):2833. doi: 10.3390/polym12122833
    [52] 孔春凤, 田伟, 康凌峰, 等. 真空灌注层叠复合材料的制备及其力学性能研究[J]. 现代纺织技术, 2016, 24(4):12-16. doi: 10.19398/j.att.2016.04.004

    KONG Chunfeng, TIAN Wei, KANG Lingfeng, et al. Study on preparation and mechanical properties of layered composite materials with vacuum infusion[J]. Advanced Textile Technology,2016,24(4):12-16(in Chinese). doi: 10.19398/j.att.2016.04.004
    [53] 杨凡, 高远博, 董雨生, 等. 原位聚合制备碳纤维增强 MC尼龙 6复合材料及其性能表征[J]. 材料开发与应用, 2018, 33(5):90-95.

    YANG Fan, GAO Yuanbo, DONG Yusheng, et al. Preparation and properties of carbon fiber reinforced MC nylon 6 composites by in-situ polymerization[J]. Development and Application of Materials,2018,33(5):90-95(in Chinese).
    [54] LEE J, LIM J W, KIM M. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite[J]. Polymer Composites,2020,41(4):1190-1202. doi: 10.1002/pc.25445
    [55] MA Q, GE J, REJAB M R M, et al. Fabrication of the carbon fiber reinforced plastic (CFRP) cone tube through the laboratory-scale 3-axis winding machine[J]. Materials Today: Proceedings,2021,46:1645-1651. doi: 10.1016/j.matpr.2020.07.259
    [56] 单毫, 陈宇, 李俊杰, 等. 红外加热缠绕成型工艺参数对CF/PEEK复合材料层间剪切性能的影响[J]. 复合材料科学与工程, 2020(1):39-46. doi: 10.3969/j.issn.1003-0999.2020.01.006

    SHAN Hao, CHEN Yu, LI Junjie, et al. Effect of infrared heating winding forming process parameters on interlaminar shear properties of CF /PEEK composites[J]. Compo-sites Science and Engineering,2020(1):39-46(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.01.006
    [57] 成烨, 还大军, 李勇, 等. AS4 D/PEEK 热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22):22190-22194. doi: 10.11896/cldb.19080178

    CHENG Ye, HUAN Dajun, LI Yong, et al. Optimization of process parameters for laser-assisted filament winding of AS4 D/PEEK thermoplastic composites[J]. Materials Reports,2020,34(22):22190-22194(in Chinese). doi: 10.11896/cldb.19080178
    [58] STRUZZIERO G, BARBEZAT M, SKORDOS A A. Consolidation of continuous fibre reinforced composites in additive processes: A review[J]. Additive Manufacturing,2021,48:102458. doi: 10.1016/j.addma.2021.102458
    [59] 梁宜楠. CF/PEEK点阵结构自动铺放原位成型工艺研究[D]. 大连: 大连理工大学, 2021.

    LIANG Yi'nan. Automated fiber placement and in-situ consolidation process of CF/PEEK lattice structure[D]. Dalian: Dalian University of Technology, 2021(in Chinese).
    [60] ZHAO D, CHEN J, ZHANG H, et al. Effects of processing parameters on the performance of carbon fiber reinforced polyphenylene sulfide laminates manufactured by laser-assisted automated fiber placement[J]. Journal of Composite Materials,2021,56(3):427-439.
    [61] SHANMUGAM V, RAJENDRAN D J J, BABU K, et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing[J]. Polymer Testing,2021,93:106925. doi: 10.1016/j.polymertesting.2020.106925
    [62] LI L, LIU W, SUN L. Mechanical characterization of 3D printed continuous carbon fiber reinforced thermoplastic composites[J]. Composites Science and Technology,2022,175:109618.
    [63] YANG D, CAO Y, ZHANG Z, et al. Effects of crystallinity control on mechanical properties of 3D-printed short-carbon-fiber-reinforced polyether ether ketone composites[J]. Polymer Testing,2021,97:107149. doi: 10.1016/j.polymertesting.2021.107149
    [64] WU J, CHEN H, WU Q, et al. Surface modification of carbon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder[J]. Materials & Design,2017,116:253-260.
    [65] ZHUO P, LI S, ASHCROFT I A, et al. Continuous fibre composite 3D printing with pultruded carbon/PA6 commingled fibres: Processing and mechanical properties[J]. Composites Science and Technology,2022,221:109341. doi: 10.1016/j.compscitech.2022.109341
    [66] UŞUN A, GÜMRÜK R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing,2021,46:102112. doi: 10.1016/j.addma.2021.102112
    [67] 刘亚男, 刘晨晓, 朱明浩, 等. 模压成型CF/PEKK 与自动铺丝CF/PEEK 热塑性复合材料对比研究[J]. 航空制造技术, 2021, 64(11):50-57, 68.

    LIU Ya’nan, LIU Chenxiao, ZHU Minghao, et al. Compara-tive study between CF/PEKK thermoplastic composite by hot-press molding and CF/PEEK composite using automatic fiber placement process[J]. Aeronautical Manufacturing Technology,2021,64(11):50-57, 68(in Chinese).
    [68] YANG C, TIAN X, LIU T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. doi: 10.1108/RPJ-08-2015-0098
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  2903
  • HTML全文浏览量:  1301
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2022-07-17
  • 录用日期:  2022-08-04
  • 网络出版日期:  2022-08-16
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回