留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP开孔板连接件双剪试验及受剪承载力计算

薛伟辰 严大威 张士前 王永生

薛伟辰, 严大威, 张士前, 等. GFRP开孔板连接件双剪试验及受剪承载力计算[J]. 复合材料学报, 2022, 39(11): 5206-5215. doi: 10.13801/j.cnki.fhclxb.20220915.001
引用本文: 薛伟辰, 严大威, 张士前, 等. GFRP开孔板连接件双剪试验及受剪承载力计算[J]. 复合材料学报, 2022, 39(11): 5206-5215. doi: 10.13801/j.cnki.fhclxb.20220915.001
XUE Weichen, YAN Dawei, ZHANG Shiqian, et al. Double shear tests and shear bearing capacity calculation of perforated GFRP ribs[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5206-5215. doi: 10.13801/j.cnki.fhclxb.20220915.001
Citation: XUE Weichen, YAN Dawei, ZHANG Shiqian, et al. Double shear tests and shear bearing capacity calculation of perforated GFRP ribs[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5206-5215. doi: 10.13801/j.cnki.fhclxb.20220915.001

GFRP开孔板连接件双剪试验及受剪承载力计算

doi: 10.13801/j.cnki.fhclxb.20220915.001
基金项目: 国家自然科学基金(52130806)
详细信息
    通讯作者:

    薛伟辰,博士,教授,博士生导师,研究方向为土木工程复合材料应用 E-mail: xuewc@tongji.edu.cn

  • 中图分类号: TB332

Double shear tests and shear bearing capacity calculation of perforated GFRP ribs

Funds: National Natural Science Foundation of China (52130806)
  • 摘要: 玻璃纤维增强树脂复合材料(GFRP)开孔板连接件是GFRP-混凝土组合梁中一种常用的抗剪连接件。开展了5组共15个GFRP开孔板连接件试件的双剪试验,试验参数包括与GFRP开孔板连接件粘结的GFRP型材接触面打磨深度(0.5 mm/1.0 mm)、孔中横向贯通GFRP筋(无/配置)、贯通GFRP筋直径(9.5 mm/13.0 mm)和混凝土强度等级(C30/C50)。试验表明:打磨深度0.5 mm和1.0 mm的试件分别发生开孔板与GFRP型材之间的粘结层破坏和板肋剪切破坏,孔中横向贯通GFRP筋和混凝土榫均完好;开孔板连接件的剪力-滑移曲线可分为微滑移段和滑移段;与打磨深度0.5 mm开孔板连接件相比,相应的打磨深度1.0 mm开孔板连接件的受剪刚度较高;配置横向贯通GFRP筋、提高混凝土强度可显著提高开孔板连接件的受剪刚度;打磨深度1.0 mm开孔板连接件受剪承载力比相应的0.5 mm开孔板连接件高44.82%,配置横向贯通GFRP筋的开孔板连接件受剪承载力比相应的未配置横向贯通筋的开孔板连接件高20%左右,而横向贯通GFRP筋直径和混凝土强度对开孔板连接件受剪承载力的影响不显著。基于最大剪应力失效准则,推导了GFRP开孔板连接件的受剪临界破坏面,提出了板肋剪切破坏下开孔板连接件受剪承载力计算公式,计算值与国内外已有试验结果对比吻合良好。

     

  • 图  1  GFRP开孔板连接件双剪试件施工图

    Figure  1.  Dimensions of specimen with GFRP perforated rib

    图  2  加载装置

    F—Loading from hydraulic jack; D1—Dial indicator at the upper hole; D2—Dial indicator at the bottom hole

    Figure  2.  Test setup for double shear tests

    图  3  GFRP开孔板连接件试件破坏形态

    Figure  3.  Failure mode of perforated GFRP ribs specimens

    图  4  GFRP开孔板连接件剪力-横向贯通GFRP筋应变曲线

    sb1—Strain gage at the upper of penetrating GFRP bar near the hole; sb2—Strain gage at the bottom of penetrating GFRP bar near the hole; sb3—Strain gage at the upper of penetrating GFRP bar away from the hole; sb4—Strain gage at the bottom of penetrating GFRP bar away from the hole

    Figure  4.  Shear load-strain curves of GFRP transverse bars in perforated GFRP ribs specimens

    图  5  GFRP开孔板连接件开孔处型材与混凝土板的剪力-滑移(P-S)曲线

    Figure  5.  Shear load-slip (P-S) curves at the position of holes in perforated GFRP ribs

    图  6  接触面打磨深度对GFRP开孔板连接件受剪承载力Pu和峰值滑移Su的影响

    Figure  6.  Effects of griding depth on shear bearing capacity Pu and slip at the peak load Su of perforated GFRP ribs

    图  7  贯通筋对GFRP开孔板连接件PuSu的影响

    Figure  7.  Effects of penetrating GFRP bars on Pu and Su of perforated GFRP ribs

    图  8  混凝土强度对GFRP开孔板连接件PuSu的影响

    Figure  8.  Effects of concrete strength on Pu and Su of perforated GFRP ribs

    图  9  混凝土榫与GFRP开孔板孔壁的接触压应力分布

    Figure  9.  Distribution of the contact press between concrete wedge and perforated GFRP ribs

    Fp—Shear force per concrete wedge; p—Contact stress between concrete wedge and perforated GFRP ribs; pxConstitution of p in the fiber direction; py—Constitution of p perpendicular to the fiber direction; β—Angle

    图  10  GFRP开孔板受剪临界破坏面的受力分布

    Figure  10.  Stress distribution on critical shear failure position of perforated GFRP ribs

    τ—Shear force in the failure plane; V—Load of specimens

    表  1  玻璃纤维增强树脂复合材料(GFRP)开孔板连接件试件参数

    Table  1.   Parameters of perforated glass fiber reinforced polymer (GFRP) ribs

    SpecimenGriding depth/mmGFRP bars diameter/mmConcrete
    grade
    FP-1, 2, 30.59.5C50
    FP-4, 5, 61.09.5C50
    FP-7, 8, 91.0C50
    FP-10, 11, 121.013.0C50
    FP-13, 14, 151.09.5C30
    Note: FP—FRP beams and perforated GFRP ribs (PFR).
    下载: 导出CSV

    表  2  混凝土力学性能

    Table  2.   Mechanical properties of concrete

    Concrete gradeCube strength
    fcu/MPa
    Prism strength
    fc/MPa
    Tensile strength
    ft/MPa
    Elastic modulus
    Ec/GPa
    C5051.942.43.539.8
    C3036.729.53.029.2
    下载: 导出CSV

    表  3  GFRP筋力学性能

    Table  3.   Mechanical properties of GFRP bars

    Diameter d/mmTensile strength ffu/MPaTensile modulus Ef/GPaShear strength ffv/MPa
    9.591051.8152
    13.086050.8143
    下载: 导出CSV

    表  4  GFRP开孔板力学性能

    Table  4.   Mechanical properties of perforated GFRP ribs

    PartDirectionTensile strength σtu/MPaTensile modulus Etu/GPaCompressive strength
    σcu/MPa
    Shear strength
    τxy/MPa
    Shear modulus
    Gxy/GPa
    WebsTransverse112.827.1131.568.313.1
    Longitudinal489.731.7230.0
    FlangesLongitudinal698.017.4161.3
    下载: 导出CSV

    表  5  GFRP开孔板连接件推出试验结果

    Table  5.   Double shear test results of perforated GFRP ribs

    SpecimenFailure modePu/kNSu/mm
    FP-1, 2, 3Debonding failure81.990.46
    FP-4, 5, 6Shearing failure of PFR118.740.64
    FP-7, 8, 9Shearing failure of PFR95.861.06
    FP-10, 11, 12Shearing failure of PFR113.910.83
    FP-13, 14, 15Shearing failure of PFR113.441.24
    Notes: Pu—Average shearing capacity of GFRP shear connector; Su—Average slip at the peak load; PFR—Perforated FRP rib.
    下载: 导出CSV

    表  6  GFRP开孔板连接件试件计算结果与试验结果对比

    Table  6.   Comparisons between test results and theoretical results of perforated GFRP ribs

    LiteratureSpecimenPu/kNlp/mmt/mmτxy/MPaD/mmnVu1/PuVu2/PuVu3/PuVu/Pu
    [17]LJ1-117.462503.623.02023.751.001.161.08
    LJ1-218.422503.623.02023.560.941.101.02
    LJ2-121.552503.623.02023.040.810.940.87
    LJ2-221.852503.623.02023.000.800.930.86
    LJ3-216.872503.623.02023.971.031.201.11
    [25]P887.505006.025.41620.850.820.920.84
    [24]TR-H4-R4333.0050010.052.03520.910.911.120.95
    TR-H8-R8295.0050010.052.03541.330.901.171.00
    This paperFP4-6118.742508.068.33020.890.871.050.99
    FP10-12113.912508.068.33021.320.911.101.03
    FP13-15113.442508.068.33020.920.921.101.04
    Average2.140.901.080.98
    Standard deviation1.5600.0050.0090.007
    Notes: Pu—Average shearing capacity of GFRP shear connector; lp—Length of the perforated GFRP ribs (mm); t—Thickness of the perforated GFRP ribs (mm); τxy—Shear strength of perforated GFRP ribs (MPa); D—Hole diameter (mm); n—Number of hole in perforated GFRP ribs; Vu1, Vu2, Vu3, Vu—Results deprive from equation (1), (2), (3), (11) respectively.
    下载: 导出CSV
  • [1] 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6):110-122.

    NIE Jianguo, TAO Muxuan, WU Lili, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal,2012,45(6):110-122(in Chinese).
    [2] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [3] 王文炜, 黄辉, 戴建国, 等. 钢-GFRP-混凝土组合梁受弯性能试验[J]. 中国公路学报, 2016, 29(9):45-52. doi: 10.3969/j.issn.1001-7372.2016.09.006

    WANG Wenwei, HUANG Hui, DAI Jianguo, et al. Experiment on flexural behavior of steel-GFRP-concrete compo-site beams[J]. China Journal of Highway and Transport,2016,29(9):45-52(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.09.006
    [4] BAI J P. Advanced fibre-reinforced polymer (FRP) compo-sites for structural applications[M]. Elsevier: Woodhead Publishing, 2013: 631-661.
    [5] ZOU X, LIN H, FENG P, et al. A review on FRP-concrete hybrid sections for bridge applications[J]. Composite Structures,2020, 262:113336.
    [6] CHENG L J, KARBHARI V M. New bridge systems using FRP composites and concrete: A state-of-the-art review[J]. Progress in Structural Engineering and Materials,2006,8(4):143-154. doi: 10.1002/pse.221
    [7] ZUO Y, CAO Y, ZHOU Y, et al. A state-of-the-art review on hybrid GFRP-concrete bridge deck systems[J]. Advances in Materials Science and Engineering,2021, 2021:1-17.
    [8] DESKOVIC N, TRIANTAFILLOU T C, MEIER U. Innovative design of frp combined with concrete-short-term behavior[J]. Journal of Structural Engineering-ASCE,1995,121(7):1069-1078. doi: 10.1061/(ASCE)0733-9445(1995)121:7(1069)
    [9] NORDIN H, TALJSTEN B. Testing of hybrid FRP composite beams in bending[J]. Composites Part B: Engineering,2004,35(1):27-33. doi: 10.1016/j.compositesb.2003.08.010
    [10] SAIIDI M, GORDANINEJAD F, WEHBE N. Behavior of graphite/epoxy concrete composite beams[J]. Journal of Structural Engineering,1994,120(10):2958-2976. doi: 10.1061/(ASCE)0733-9445(1994)120:10(2958)
    [11] CORREIA J R, BRANCO F A, FERREIRA J. GFRP-concrete hybrid cross-sections for floors of buildings[J]. Engineering Structures,2009,31(6):1331-1343. doi: 10.1016/j.engstruct.2008.04.021
    [12] GONG J W, ZOU X X, XIA P. Experimental investigation of the natural bonding strength between stay-in-place form and concrete in FRP-concrete decks/beams[J]. Applied Sciences,2019,9(5):913. doi: 10.3390/app9050913
    [13] ZOU X X, FENG P, WANG J Q, et al. FRP stay-in-place form and shear key connection for FRP-concrete hybrid beams/decks[J]. Composite Structures,2018,192:489-499. doi: 10.1016/j.compstruct.2018.03.011
    [14] ZOU X, FENG P, WANG J. Bolted shear connection of FRP-concrete hybrid beams[J]. Journal of Composites for Construction,2018,22(3):04018012. doi: 10.1061/(ASCE)CC.1943-5614.0000845
    [15] NGUYEN H, MUTSUYOSHI H, ZATAR W. Push-out tests for shear connections between UHPFRC slabs and FRP girder[J]. Composite Structures,2014,118:528-547. doi: 10.1016/j.compstruct.2014.08.003
    [16] HALL J E, MOTTRAM J T. Combined FRP reinforcement and permanent formwork for concrete members[J]. Jour-nal of Composites for Construction,1998,2(2):78-86. doi: 10.1061/(ASCE)1090-0268(1998)2:2(78)
    [17] 薛伟辰, 张赛, 葛畅. FRP混凝土组合梁抗剪连接件试验研究[J]. 公路交通科技(应用技术版), 2014, 10(1):207-210.

    XUE Weichen, ZHANG Sai, GE Chang. Experimental study on shear connectors of FRP concrete composite beams[J]. Journal of Highway and Transportation Research and Development,2014,10(1):207-210(in Chinese).
    [18] ZIEHL P H, ENGELHARDT M D, FOWLER T J, et al. Design and field evaluation of hybrid FRP/reinforced concrete superstructure system[J]. Journal of Bridge Engineering,2009,14(5):309-318. doi: 10.1061/(ASCE)BE.1943-5592.0000002
    [19] ULLOA F V, MEDLOCK R D, ZIEHL P H, et al. Hybrid bridges in texas[J]. Concrete International, 2004, 26(5): 38-43.
    [20] 邵忠民, 冯鹏. GFRP材料的工程应用实例[J]. 市政技术, 2012, 30(2):125-128. doi: 10.3969/j.issn.1009-7767.2012.02.052

    SHAO Zhongmin, FENG Peng. Case study of GFRP application in an engineering project[J]. Municipal Engineering Technology,2012,30(2):125-128(in Chinese). doi: 10.3969/j.issn.1009-7767.2012.02.052
    [21] LIU T, FENG P, LU X, et al. Flexural behavior of novel hybrid multicell GFRP-concrete beam[J]. Composite Structures,2020,250:112606.
    [22] CORREIA J R, BRANCO F A, FERREIRA J G. Flexural behaviour of GFRP-concrete hybrid beams with interconnection slip[J]. Composite Structures,2007,77(1):66-78. doi: 10.1016/j.compstruct.2005.06.003
    [23] NAM J H, YOON S J, OK D M, et al. Perforated FRP shear connector for the FRP-concrete composite bridge deck[J]. Key Engineering Materials,2007:381-384.
    [24] HUANG H L, LI A, CHEN L, et al. Push-out tests for shear connectors in GFRP-concrete composite bridge deck slabs[J]. Journal of Advanced Concrete Technology,2018,16(8):368-381. doi: 10.3151/jact.16.368
    [25] ZOU X X, FENG P, WANG J Q. Perforated FRP ribs for shear connecting of FRP-concrete hybrid beams/decks[J]. Composite Structures,2016,152:267-276. doi: 10.1016/j.compstruct.2016.05.039
    [26] MEDBERRY S B, SHAHROOZ B M. Perfobond shear connector for composite construction[J]. Engineering Journal,2002,39(1):2-11.
    [27] GWON S C, KIM S H, YOON S J, et al. An experimental study on the shear strength of FRP perfobond shear connector[C]//IOP Conference Series: Materials Science and Engineering. 2018 International Conference on Material Strength and Applied Mechanics. Kitakyushu: IOP Publishing, 2018: 012042.
    [28] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范: GB 50608—2020[S]. 北京: 中国标准出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608—2020[S]. Beijing: China Standards Press, 2020(in Chinese).
    [29] European Committee for Standardization. Eurocode 4: Design of composite steel and concrete structures: Part 1—1: General rules and rules for buildings: EN 1994-1-1[S]. Brussels: CEN, 2004.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  313
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-08-22
  • 录用日期:  2022-08-30
  • 网络出版日期:  2022-09-19
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回