留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温下CFRP筋及其黏结型锚固系统的力学性能

苏捷 李权浩 方志 蒋正文 方川 王志伟

苏捷, 李权浩, 方志, 等. 高温下CFRP筋及其黏结型锚固系统的力学性能[J]. 复合材料学报, 2021, 39(0): 1-11
引用本文: 苏捷, 李权浩, 方志, 等. 高温下CFRP筋及其黏结型锚固系统的力学性能[J]. 复合材料学报, 2021, 39(0): 1-11
Jie SU, Quanhao LI, Zhi FANG, Zhengwen JIANG, Chuan FANG, Zhiwei WANG. Mechanical properties of CFRP bar and bond-type anchorage system exposed to elevated temperature[J]. Acta Materiae Compositae Sinica.
Citation: Jie SU, Quanhao LI, Zhi FANG, Zhengwen JIANG, Chuan FANG, Zhiwei WANG. Mechanical properties of CFRP bar and bond-type anchorage system exposed to elevated temperature[J]. Acta Materiae Compositae Sinica.

高温下CFRP筋及其黏结型锚固系统的力学性能

基金项目: 国家自然科学基金(51908206;51408213)
详细信息
    通讯作者:

    蒋正文,博士,副教授,研究方向为高性能材料结构抗火性能 E-mail:jiangzw@hnu.edu.cn

  • 中图分类号: TU502

Mechanical properties of CFRP bar and bond-type anchorage system exposed to elevated temperature

  • 摘要: 为明确高温下碳纤维增强复合材料(Carbon fiber reinforced polymer,CFRP)筋及其以活性粉末混凝土(RPC)为黏结介质的黏结型锚固系统的力学性能,以处理温度为试验参数,完成了12个筋材试件的高温轴拉试验和8个锚固性能试件的高温拉拔试验。揭示了处理温度对高温下CFRP筋及其黏结型锚固系统力学性能的影响规律,建立了适于分析高温下CFRP筋轴向拉伸性能、以RPC为黏结介质的黏结型锚固系统黏结强度及临界锚固长度的实用计算公式。结果表明:对于筋材轴拉试件,100℃、210℃和300℃下筋材的抗拉强度、弹性模量较常温试件分别下降了(2.3%、11.4%)、(29.8%、35.6%)和(40.9%、45%),高温下筋材的弹性模量较抗拉强度受处理温度的影响更为显著;100℃、210℃和300℃下筋材的极限拉应变较常温试件分别增大了18.5%、17.3%和14.8%,高温下筋材的极限拉应变随处理温度升高而呈先增大后减小的变化趋势;对于锚固性能试验,试件的黏结强度随处理温度升高而线性衰减,处理温度为100℃、210℃与300℃试件的黏结强度较常温试件分别下降了20.4%、52.6%和85.1%。文中所建立的高温下CFRP筋与黏结型锚固系统力学性能的实用计算公式均具有较高精度。

     

  • 图  1  碳纤维增强聚合物复合材料(CFRP)筋轴拉试件 (单位:mm)

    Figure  1.  Axial tensile specimen of carbon fiber reinforced polymer (CFRP) bar (Units: mm)

    图  2  CFRP筋-活性粉末混凝土(RPC)锚固性能试件 (单位:mm)

    Figure  2.  Anchorage performance specimen of CFRP bar- reactive powder concrete (RPC) (Units: mm)

    图  3  CFRP筋及其外观尺寸(单位:mm)

    Figure  3.  CFRP bar and its external dimensions (Units: mm)

    图  4  轴拉试验的温升及加载装置

    Figure  4.  Setups of elevated temperature and loading of axial tensile test

    图  5  锚固性能试验的温升及加载装置

    Figure  5.  Setups of elevated temperature and loading of anchorage performance test

    图  6  温升及加载过程

    Figure  6.  Processes of elevated temperature and loading

    T0—Room temperature;Ta—Target temperature;Pu—Ultimate load

    图  7  CFRP筋轴拉试件的破坏形态

    Figure  7.  Typical failure modes of CFRP bar axial tensile specimen

    图  8  CFRP筋轴拉试件的应力-应变曲线

    Figure  8.  Stress-strain curves of CFRP bar axial tensile specimen

    图  9  高温下CFRP筋轴拉性能衰减规律

    Figure  9.  Decay law of axial tensile performance of CFRP bar exposed to elevated temperature

    图  10  CFRP筋-RPC锚固性能试件破坏形态

    Figure  10.  Typical failure modes of CFRP bar-RPC anchorage performance specimens

    图  11  高温下CFRP筋-RPC锚固性能试件的黏结-滑移曲线

    Figure  11.  Bond-slip curves of CFRP bar-RPC anchorage performance specimens exposed to elevated temperature

    图  12  处理温度对CFRP筋-RPC界面黏结强度的影响

    Figure  12.  Effect of elevated temperature on bond strength of CFRP bar-RPC interface

    图  13  (T-T0)/Tg对高温下CFRP筋轴拉性能的影响

    Figure  13.  Effect of (T-T0)/Tg on axial tensile performance of CFRP bar exposed to elevated temperature

    表  1  CFRP筋外观尺寸及玻璃化转变温度Tg

    Table  1.   Dimensions and glass transition temperature Tg of CFRP bar

    Nominal
    diameter/mm
    Rib
    width/mm
    Rib
    height/mm
    Embossing
    space/mm
    Tg/℃
    129.260.2714.8210
    下载: 导出CSV

    表  2  RPC配合比及抗压强度

    Table  2.   Mix proportion and compressive strength of RPC

    Strength gradecementSilica fumequartz flourQuartz sandwater reducerWater binder ratio
    RPC15010.250.251.10.020.16
    下载: 导出CSV

    表  3  CFRP筋轴向拉伸试验结果

    Table  3.   Results of axial tensile test for CFRP bar

    Specimen
    code
    Pu//kNfu/MPa$ {\overline f _{\text{u}}}/{\text{MPa}} $E/GPa$ \overline E /{\text{GPa}} $$ { \varepsilon _{\text{u}}}/{10^{ - 6}} $$ {\overline \varepsilon _{\text{u}}}/{10^{ - 6}} $
    AT-T25-1280.826312650162.2159.91562715513
    AT-T25-2283.12653161.815464
    AT-T25-3284.52666155.615448
    AT-T100-1274.225692588133.0141.61850618387
    AT-T100-2278.02605143.518343
    AT-T100-3276.32589148.318312
    AT-T210-1198.91864186198.7102.91829818201
    AT-T210-2192.71806105.518254
    AT-T210-3204.31914104.418051
    AT-T300-1176.01649156682.687.91796317816
    AT-T300-2157.0147192.417762
    AT-T300-3168.3157788.817723
    Notes: In the specimen code, AT is axial tensile, T indicates the treatment temperature, the last number indicates the same specimen number; Pu is the tensile breaking force; fu is the tensile strength and $ {\overline f _{\text{u}}} $ is the average value; E is the elastic modulus and $ \overline E $ is the average value; $ { \varepsilon _{\text{u}}}$ is the ultimate tensile strain and $ {\overline \varepsilon _{\text{u}}} $ is the average value.
    下载: 导出CSV

    表  4  CFRP筋-RPC锚固性能试验结果

    Table  4.   Results of CFRP bar-RPC anchorage performance test

    Specimen codeT/℃Pu/kN$ {\overline P _{\text{u}}}/{\text{kN}} $τu/MPas/mm$ \overline s /{\text{mm}} $
    A-T25-L5d-12566.7466.3829.366.746.67
    A-T25-L5d-266.026.60
    A-T100-L5d-110050.5852.8423.376.446.53
    A-T100-L5d-255.106.62
    A-T210-L5d-121034.3031.4713.925.886.01
    A-T210-L5d-228.646.14
    A-T300-L5d-130011.859.854.365.695.63
    A-T300-L5d-27.855.57
    Notes: In the specimen code, A is anchorage, T indicates the treatment temperature, the last number indicates the same specimen number; T is the treatment temperature; L is the bond length; τu is the average bond strength; s is the slip of loading end corresponding to Pu.
    下载: 导出CSV

    表  5  CFRP筋轴拉试件极限拉应变试验值与计算值对比

    Table  5.   Comparison of measured and predicted ultimate tensile strain of CFRP bar axial tensile specimens

    Specimen codeεu,t/10−6εu,c/10−6εu,t/εu,c
    AT-T2515513155131.00
    AT-T10018387179021.03
    AT-T21018201182270.999
    AT-T30017816178520.998
    Average1.01
    Variation coefficient0.01
    Note: εu,t εu,c are the experimental and calculated values of ultimate tensile strain of axial tensile specimen respectively.
    下载: 导出CSV

    表  6  CFRP筋-RPC界面黏结强度试验值与计算值对比

    Table  6.   Comparison between measured and predicted bond strength of CFRP bar-RPC interface

    Specimen
    code
    fcu/MPaτu,t/MPaτu,c/MPaτu,t/τu,c
    A-T25-L5d15829.3629.890.98
    A-T100-L5d15823.3723.061.01
    A-T210-L5d15813.9213.041.07
    A-T300-L5d1584.364.840.90
    Average0.99
    Variation coefficient0.06
    Note: fcu is the cube compressive strength of RPC; τu,t, τu,c are the experimental and calculated values of interfacial bond strength between CFRP bars and RPC respectively.
    下载: 导出CSV

    表  7  CFRP筋-RPC锚固性能试件临界锚固长度计算值及预测的破坏形态

    Table  7.   Critical anchorage length determined by formula and predicted failure mode of CFRP bar-RPC anchorage performance test

    Specimen
    code
    T/℃Anchorage
    length/mm
    Actual
    failure
    mode
    Critical
    anchorage
    length/mm
    Predicted
    failure
    mode
    A-T25-L5d2560Slip304.9Slip
    A-T100-L5d100389.0
    A-T210-L5d210497.8
    A-T300-L5d3001142.9
    下载: 导出CSV
  • [1] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG Jin-guang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [2] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lie-ping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [3] 郝庆多, 王勃, 欧进萍. 纤维增强塑料筋在土木工程中的应用[J]. 混凝土, 2006(9):38-40,44. doi: 10.3969/j.issn.1002-3550.2006.09.012

    HAO Qing-duo, WANG Bo, OU Jin-ping. Fiber reinforced polymer rebar's application to civil engineering[J]. Concrete,2006(9):38-40,44(in Chinese). doi: 10.3969/j.issn.1002-3550.2006.09.012
    [4] 梅葵花, 吕志涛, 张继文. CFRP筋黏结型锚具试验研究及实桥应用分析[J]. 中国公路学报, 2016, 29(1):53-60. doi: 10.3969/j.issn.1001-7372.2016.01.007

    MEI Kui-hua, LU Zhi-tao, ZHANG Ji-wen. Experimental study and practical application of bond-type anchorages for CFRP tendons[J]. China Journal of Highway and Transport,2016,29(1):53-60(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.01.007
    [5] 宋进辉. 大吨位FRP拉索整体锚固体系优化设计及性能评价[D]. 南京: 东南大学, 2017.

    SONG Jin-hui. Optimal design and performance evaluation of integral anchoring system with large tonnage FRP cable[D]. Nanjing: Southeast University, 2017. (in Chinese).
    [6] 方志, 王常林, 张洪侨, 等. 碳纤维绞线在活性粉末混凝土中锚固性能的试验研究[J]. 中国公路学报, 2016, 29(6):198-206. doi: 10.3969/j.issn.1001-7372.2016.06.006

    FANG Zhi, WANG Chang-lin, ZHANG Hong-qiao, et al. Experimental study on anchoring performance of CFRP strand in reactive powder concrete[J]. China Journal of Highway and Transport,2016,29(6):198-206(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.06.006
    [7] WANG L C, ZHANG J Y, XU J, et al. Anchorage systems of CFRP cables in cable structures - a review[J]. Construction and Building Materials,2018,160:82-99. doi: 10.1016/j.conbuildmat.2017.10.134
    [8] ZHANG K Y, FANG Z, NANNI A, et al. Experimental study of a large-scale ground anchor system with FRP tendon and RPC grout medium[J]. Journal of Composites for Construction, 2015, 19(4): 04014073-1~11.
    [9] 李国强, 吴波, 蒋首超. 工程结构抗火研究进展与建议[J]. 建筑钢结构进展, 2010, 12(5):13-18.

    LI Guo-qiang, WU Bo, JIANG Shou-chao. State of the art and suggestions of research on fire resistance of structures[J]. Progress in Steel Building Structures,2010,12(5):13-18(in Chinese).
    [10] ZHANG Y, FANG Z, JIANG R N, et al. Static performance of a long-span concrete cable-stayed bridge subjected to multiple-cable loss during construction[J]. Journal of Bridge Engineering,2020,25(3):04020002. doi: 10.1061/(ASCE)BE.1943-5592.0001529
    [11] 张帅, 张隐, 潘明珠. 阻燃预警智能涂层的研究进展[J]. 复合材料学报, 2021, 38(1): 1-12.

    ZHANG Shuai, ZHANG Yin, PAN Ming-zhu. Research progress of intelligent flame retardant coating with fire-warning capabilities[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20200813.001. (in Chinese).
    [12] 姚秀鹏, 韩阳, 沈雷, 等. 高温后聚丙烯纤维增强水泥基复合材料导热的多尺度方法[J]. 复合材料学报, 2020, 0(0): 1-12.

    YAO Xiu-peng, HAN Yang, SHEN Lei, et al. Multi-scale method for thermal conductivity of polypropylene fiber reinforced cementitious composites after high temperature[J]. Acta Materiae Compositae Sinica. (in Chinese).
    [13] WANG Y C, WANG P M H, KODUR V. An experimental study of the mechanical properties of Fibre Reinforced Polymer (FRP) and steel reinforcing bars at elevated temperatures[J]. Composite Structures,2007,80(1):131-140. doi: 10.1016/j.compstruct.2006.04.069
    [14] 杨桢楠. CFRP筋混凝土受弯构件的抗火性能研究[D]. 南京: 东南大学, 2017.

    YANG Zhen-nan. Study on fire resistance behavior of reinforced concrete flexural members with CFRP bars[D]. Nanjing: Southeast University, 2017. (in Chinese).
    [15] 周飞. 火场温度作用下CFRP筋混凝土受弯构件的结构性能研究[D]. 南京: 东南大学, 2019.

    ZHOU Fei. Study on structural behavior of concrete flexural members with CFRP tendons under fire action[D]. Nanjing: Southeast University, 2019. (in Chinese).
    [16] 吕西林, 周长东, 金叶. 火灾高温下GFRP筋和混凝土黏结性能试验研究[J]. 建筑结构学报, 2007, 28(5):32-39. doi: 10.3321/j.issn:1000-6869.2007.05.004

    LU Xi-lin, ZHOU Chang-dong, JIN Ye. Test study on bond behavior between GFRP bar and concrete in high temperature[J]. Journal of Building Structures,2007,28(5):32-39(in Chinese). doi: 10.3321/j.issn:1000-6869.2007.05.004
    [17] AMMON K, NETA B, LAWRENCE C B. Effect of high temperature on bond of FRP rebars[J]. Journal of Composites for Construction,1999,3(2):73-81. doi: 10.1061/(ASCE)1090-0268(1999)3:2(73)
    [18] AMNON K, NETA B. Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete[J]. Cement Concrete Composites,2000,22:433-443. doi: 10.1016/S0958-9465(00)00043-3
    [19] 王晓璐, 查晓雄, 张旭琛. 高温下FRP筋和混凝土的黏结性能[J]. 哈尔滨工业大学学报, 2013, 45(6):8-15. doi: 10.11918/j.issn.0367-6234.2013.06.002

    WANG Xiao-lu, ZHA Xiao-xiong, ZHANG Xu-chen. Bond behavior of FRP rebar and concrete at elevated temperature[J]. Journal of Harbin Institute of Technology,2013,45(6):8-15(in Chinese). doi: 10.11918/j.issn.0367-6234.2013.06.002
    [20] 鞠竹, 王振清, 李晓霁, 等. 高温下GFRP筋和混凝土黏结性能的实验研究[J]. 哈尔滨工程大学学报, 2012, 33(11):1351-1357.

    JU Zhu, WANG Zhen-qing, LI Xiao-ji, et al. The experimental investigation of bond behavior between GFRP bar and concrete in high temperature[J]. Journal of Harbin Engineering University,2012,33(11):1351-1357(in Chinese).
    [21] 方志, 方川, 蒋正文, 等. 高温后CFRP筋及其锚固系统力学性能试验研究[J]. 复合材料学报, 2021:38.

    FANG Zhi, FANG Chuan, JIANG Zheng-wen, et al. Mechanical properties of CFRP bar and bond-type anchorage system after elevated temperature exposure[J]. Acta Materiae Compositae Sinica,2021:38(in Chinese).
    [22] 中国建筑材料联合会(标准制定单位). 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.
    [23] ACI. Guide for the design and construction of structural concrete reinforced with Fiber-Reinforced Polymer (FRP) bars: ACI 440.1R-15[S]. Farmington Hills: American Concrete Institute, 2015
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 录用日期:  2021-12-02
  • 修回日期:  2021-12-01
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回