留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印仿海螺壳-珍珠贝壳混合设计复合材料的动态响应

齐国梁 郭章新 卫世义 武晓东 李永存 安连浩 王可

齐国梁, 郭章新, 卫世义, 等. 3D打印仿海螺壳-珍珠贝壳混合设计复合材料的动态响应[J]. 复合材料学报, 2022, 41(0): 1-10
引用本文: 齐国梁, 郭章新, 卫世义, 等. 3D打印仿海螺壳-珍珠贝壳混合设计复合材料的动态响应[J]. 复合材料学报, 2022, 41(0): 1-10
Guoliang QI, Zhangxin GUO, Shiyi WEI, Xiaodong WU, Yongcun LI, Lianhao AN, Ke WANG. Dynamic response of composite materials designed by 3D printing imitation conch shell pearl shell hybrid design[J]. Acta Materiae Compositae Sinica.
Citation: Guoliang QI, Zhangxin GUO, Shiyi WEI, Xiaodong WU, Yongcun LI, Lianhao AN, Ke WANG. Dynamic response of composite materials designed by 3D printing imitation conch shell pearl shell hybrid design[J]. Acta Materiae Compositae Sinica.

3D打印仿海螺壳-珍珠贝壳混合设计复合材料的动态响应

基金项目: 山西省基础研究计划资助项目(202103021224111;20210302123126);国家自然科学基金青年项目(11602160);山西省 “1331工程” 重点创新团队项目
详细信息
    通讯作者:

    郭章新,博士,副教授,研究方向为复合材料及其结构的力学性能分析 E-mail: woxintanran215@163.com

  • 中图分类号: TB330

Dynamic response of composite materials designed by 3D printing imitation conch shell pearl shell hybrid design

Funds: Supported by Fundamental Research Program of Shanxi Province(202103021224111; 20210302123126);National Natural Science Foundation of China (11602160); the "1331 project" Key Innovation Teams of Shanxi Province
  • 摘要: 目 的:受自然环境的影响,自然界中的动植物为了适应环境衍生出精细、有组织的结构,这些结构往往具有优异的材料特性。根据生物结构的独特构型设计出来的仿生结构在汽车车身轻量化、航空航天,特别是高科技领域有着广阔的应用前景和潜在的应用价值。海螺壳结构和珍珠贝壳结构都具有优良的防护功能,本文通过3D打印技术将两种结构有序结合,提出了一种混合设计结构,研究了仿海螺壳-珍珠贝壳混合设计复合材料的动态响应。方 法:通过静态三点弯和动态三点弯实验,研究了基于海螺壳和珍珠贝壳层的仿生混合设计复合材料在不同应变率下海螺壳单元倾斜角度对试样断裂行为的影响。并对最优海螺壳倾斜角度的混合设计结构进行了落锤实验,研究了不同冲击速度下混合设计结构的动态响应。结 果:从从准静态三点弯实验中可以看出,裂纹先沿着砖泥结构软相向上蜿蜒,裂纹在砖泥结构中偏转之后达到与海螺壳结构交界处时发生反向偏转。在软相交接层中偏转后继续沿海螺壳结构最下层的软相倾斜偏转,最终载荷达到卸载要求,裂纹停留在海螺壳结构的中间层。在45°样品裂纹扩展过程中,裂纹在经过砖泥结构软相后,沿着海螺壳单元45°倾斜软相继续萌生,导致其峰值载荷较大。60°样品的裂纹扩展路径由砖泥结构扩展到海螺壳结构中时由于角度较大无法沿着软相倾斜角度偏转,硬相直接垂直开裂,峰值载荷最小。15°样品由于倾斜角度过小,导致裂纹并未向倾斜软相偏转而发生塑性变形。从动态三点弯试验中可以看出,15°和30°试样出现了I字型裂纹,45°和60°试样出现了Y型裂纹。Y型裂纹的起裂功比I型裂纹的起裂功大。从落锤实验中可以看出,发生了两种破坏模式,冲击速度增大至一定范围内结构的有效比吸能不再继续增加,吸能效率随无量纲冲量的增大先增大后减小。结 论:(1)在较低的应变率下,45°样品强度高,吸能效果好,30°样品断裂韧性较好;在较高应变率下,45°样品强度与韧性较好;(2)不同应变率下结构产生裂纹的路径不同,低应变率下裂纹沿砖泥结构软相偏转,后发生界面分层,再向海螺壳结构倾斜的软相偏转;较高应变率时,裂纹通过硬相材料和软相材料同时传播,倾斜角度小时裂纹呈I字形扩展,倾斜角度大时裂纹呈Y字形扩展,Y字形扩展时,消耗的能量更多;(3)落锤实验表明,当冲击速度达到1.8m/s时,继续增加冲击速度至2.0m/s对仿海螺壳-珍珠贝壳结构的动态响应无明显影响。结构起裂前吸收的能量和起裂后吸收的能量在总吸能中的占比趋于稳定。这是由于界面分层吸收了更多的能量。在一定冲量范围内,结构在临界冲击速度时吸能效率最大。

     

  • 图  1  仿海螺壳-珍珠贝壳混合设计结构图

    Figure  1.  Imitation conch shell pearl shell mixed design structure diagram

    图  2  准静态三点弯实验装置图

    Figure  2.  Schematic diagram of quasi-static three-point bending test

    图  3  海螺壳单元倾斜角度示意图

    Figure  3.  Schematic diagram of inclination angle of conch shell unit

    图  4  仿海螺壳-珍珠贝壳混合设计结构复合材料准静态三点弯载荷-位移曲线

    Figure  4.  Quasi-static three-point bending load displacement curve of composite structure with hybrid design of sea snail shell and pearl shell

    图  5  仿海螺壳-珍珠贝壳混合设计结构复合材料准静态三点弯曲裂纹扩展图

    Figure  5.  Quasi static three-point bending crack propagation diagram of composite materials with hybrid design of sea snail shell and pearl shell

    图  6  仿海螺壳-珍珠贝壳混合设计结构复合材料临界挠度值和断裂韧性

    Figure  6.  Critical deflection value and fracture toughness of composite materials with hybrid design of sea snail shell and pearl shell

    图  7  仿海螺壳-珍珠贝壳混合设计结构复合材料能量吸收

    Figure  7.  Energy absorption of composite materials with hybrid design of sea snail shell and pearl shell

    图  8  裂纹的基本类型

    Figure  8.  Basic types of cracks

    图  9  仿海螺壳-珍珠贝壳混合设计结构复合材料45°试样裂纹扩展图

    Figure  9.  Crack growth diagram of 45° specimen of composite materials with hybrid design of sea snail shell and pearl shell

    图  10  海螺壳结构第二层裂纹扩展示意图

    Figure  10.  Schematic diagram of crack propagation in the second layer of conch shell structure

    图  11  改进的分离式Hopkinson杆系统原理图[20]

    Figure  11.  Schematic diagram of improved split Hopkinson rod system[20]

    图  12  仿海螺壳-珍珠贝壳混合设计结构复合材料60°试件的载荷-位移曲线

    Figure  12.  Load-displacement curve of 60° composite specimen with hybrid design of sea snail shell and pearl shell

    图  13  不同海螺壳单元倾斜角度混合设计试样载荷-位移曲线

    Figure  13.  Load-displacement curves of mixed design specimens with different inclination angles of conch shell elements

    图  14  仿海螺壳-珍珠贝壳混合设计结构复合材料起裂功和起裂时间

    Figure  14.  Initiation work and initiation time of composite materials with hybrid design of sea snail shell and pearl shell

    图  15  不同海螺壳单元倾斜角度混合设计试样裂纹图

    Figure  15.  Crack diagram of mixed design specimen with different inclination angles of conch shell elements

    图  16  落锤测试机及其原理图

    Figure  16.  Drop hammer tester and its schematic diagram

    图  17  仿海螺壳-珍珠贝壳混合设计结构复合材料落锤实验样品

    Figure  17.  Drop hammer test sample of composite materials with hybrid design of sea snail shell and pearl shell

    图  18  不同冲击速度下Design-1损伤图

    Figure  18.  Damage diagram of Design-1 at different impact speeds

    图  19  仿海螺壳-珍珠贝壳混合设计结构复合材料不同冲击速度下载荷-位移曲线

    Figure  19.  Load-displacement curves under different impact speeds of composite materials with hybrid design of sea snail shell and pearl shell

    图  20  仿海螺壳-珍珠贝壳混合设计结构复合材料不同冲击速度下比吸能

    Figure  20.  Specific energy absorption at different impact speeds of composite materials with hybrid design of sea snail shell and pearl shell

    图  21  吸能效率随无量纲冲量变化的规律

    Figure  21.  Law of energy absorption efficiency changing with non dimensional impulse

    表  1  不同冲击速度下海螺壳结构基本单元倾斜角度为45°的仿海螺壳-珍珠贝壳复合结构(Design-1)和单一设计的珍珠贝壳层砖泥结构(Design-2)落锤测试结果

    Table  1.   Drop hammer test results of the sea snail shell like pearl shell composite structure (Design-1) and the single designed pearl shell layer brick mud structure (Design-2) with the basic unit inclination angle of 45° under different impact velocities

    No.Composite typeImpact velocity/
    (m·s−1)
    Max load/
    kN
    Max deflection/
    mm
    Residual velocity/
    (m·s−1)
    Perforated?Critical impact
    energy/J
    Design-11.30.752±0.18.9±0.40.0No-
    1.50.776±0.110.2±0.50.0No-
    1.60.794±0.114.6±1.50.08±0.1Yes6.1
    1.70.825±0.113.9±1.10.25±0.1Yes-
    1.80.822±0.212.8±1.30.42±0.1Yes-
    2.00.836±0.112.2±0.80.55±0.2Yes-
    Design-21.30.741±0.19.8±0.30.0No-
    1.50.762±0.110.9±0.40.09±0.1Yes5.4
    2.00.818±0.18.9±0.50.61±0.3Yes-
    下载: 导出CSV
  • [1] ZHOU B L. The biomimetic study of composite materials[J]. JOM,1994,46(2):57-62. doi: 10.1007/BF03222561
    [2] ZHANG P, HEYNE M A, To A C. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3 D printing, and testing[J]. Journal of the Mechanics and Physics of Solids,2015,83:285-300. doi: 10.1016/j.jmps.2015.06.015
    [3] 王振兴, 原梅妮, 李立州, 等. 贝壳珍珠母增韧机理研究进展 [J]. 材料导报, 2015, 29(15): 98-102.

    WANG Zhenxing, YUAN Meini, LI Lizhou, et al. Research progress on toughening mechanism of mother of pearl [J] Materials Guide, 2015, 29 (15): 98-102(in Chinese).
    [4] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016 (7): 728-734.

    MA Xiaoyong, LIANG Haiyi, WANG Lianfeng. Mechanical properties of three-dimensional printed shell bionic structure [J] Science Bulletin, 2016 (7): 728-734(in Chinese).
    [5] 邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征[J]. 复合材料学报, 2019, 36(10):2398-2406.

    SHAO Haobin, ZHU Jun, ZHOU Qi, et al. Microstructure and size change characteristics of Hyriopsis cumingii shells[J]. Acta Materiae Compositae,2019,36(10):2398-2406(in Chinese).
    [6] LI H, ShEN J, WEI Q, et al. Dynamic self-strengthening of a bio-nanostructured armor—conch shell[J]. Materials Science and Engineering:C,2019,103:109820. doi: 10.1016/j.msec.2019.109820
    [7] HOU D F, ZHOU G S, ZHENG M. Conch shell structure and its effect on mechanical behaviors[J]. Biomaterials,2004,25(4):751-756. doi: 10.1016/S0142-9612(03)00555-6
    [8] VAN Le T, GHAZLAN A, NGO T, et al. Performance of a bio-mimetic 3 D printed conch-like structure under quasi-static loading[J]. Composite Structures,2020,246:112433. doi: 10.1016/j.compstruct.2020.112433
    [9] MENIG R, MEYERS M H, MEYERS M A, et al. Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells[J]. Materials Science and Engineering:A,2001,297(1-2):203-211. doi: 10.1016/S0921-5093(00)01228-4
    [10] KAMAT S, SU X, BALLARINI R, et al. Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature,2000,405(6790):1036-1040. doi: 10.1038/35016535
    [11] KUHN-SPEARING L T, KESSLER H, CHATEAU E, et al. Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates[J]. Journal of Materials Science,1996,31(24):6583-6594. doi: 10.1007/BF00356266
    [12] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters,2016,9:317-323. doi: 10.1016/j.eml.2016.09.006
    [13] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites[J]. Advanced Materials,2017,29(28):1700060. doi: 10.1002/adma.201700060
    [14] JIA Z, YU Y, HOU S, et al. Biomimetic architected materials with improved dynamic performance[J]. Journal of the Mechanics and Physics of Solids,2019,125:178-197. doi: 10.1016/j.jmps.2018.12.015
    [15] JIA Z, YU Y, WANG L. Learning from nature: Use material architecture to break the performance tradeoffs[J]. Materials & Design,2019,168:107650.
    [16] BARTHELAT F, TANG H, ZAVATTIERI P D, et al. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure[J]. Journal of the Mechanics and Physics of Solids,2007,55(2):306-337. doi: 10.1016/j.jmps.2006.07.007
    [17] BRUET B J F, SONG J, BOYCE M C, et al. Materials design principles of ancient fish armour[J]. Nature materials,2008,7(9):748-756. doi: 10.1038/nmat2231
    [18] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer[J]. Science,2012,336(6086):1275-1280. doi: 10.1126/science.1218764
    [19] WANG B, YANG W, SHERMAN V R, et al. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales[J]. Acta biomaterialia,2016,41:60-74. doi: 10.1016/j.actbio.2016.05.028
    [20] ŁODYGOWSKI T, RUSINEK A. Constitutive relations under impact loadings[M]. CISM International Centre for Mechanical Sciences, Udine, 2014.
    [21] WU X, MENG X, ZHANG H. An experimental investigation of the dynamic fracture behavior of 3 D printed nacre-like composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,112:104068. doi: 10.1016/j.jmbbm.2020.104068
    [22] 马小敏, 李世强, 李鑫, 等. 编织Kevlar/Epoxy复合材料层合板在冲击荷载下的动态响应[J]. 爆炸与冲击, 2016, 36(2):170-176. doi: 10.11883/1001-1455(2016)02-0170-07

    MA Xiaomin, LI Shiqiang, LI Xin, et al. Dynamic response of braided Kevlar/Epoxy composite laminates under impact loading[J]. Explosion and Shocks Waves,2016,36(2):170-176(in Chinese). doi: 10.11883/1001-1455(2016)02-0170-07
  • 加载中
计量
  • 文章访问数:  147
  • HTML全文浏览量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 修回日期:  2022-12-02
  • 录用日期:  2022-12-09
  • 网络出版日期:  2022-12-30

目录

    /

    返回文章
    返回