Dynamic response of composite materials designed by 3D printing imitation conch shell pearl shell hybrid design
-
摘要:
目 的:受自然环境的影响,自然界中的动植物为了适应环境衍生出精细、有组织的结构,这些结构往往具有优异的材料特性。根据生物结构的独特构型设计出来的仿生结构在汽车车身轻量化、航空航天,特别是高科技领域有着广阔的应用前景和潜在的应用价值。海螺壳结构和珍珠贝壳结构都具有优良的防护功能,本文通过3D打印技术将两种结构有序结合,提出了一种混合设计结构,研究了仿海螺壳-珍珠贝壳混合设计复合材料的动态响应。方 法:通过静态三点弯和动态三点弯实验,研究了基于海螺壳和珍珠贝壳层的仿生混合设计复合材料在不同应变率下海螺壳单元倾斜角度对试样断裂行为的影响。并对最优海螺壳倾斜角度的混合设计结构进行了落锤实验,研究了不同冲击速度下混合设计结构的动态响应。结 果:从从准静态三点弯实验中可以看出,裂纹先沿着砖泥结构软相向上蜿蜒,裂纹在砖泥结构中偏转之后达到与海螺壳结构交界处时发生反向偏转。在软相交接层中偏转后继续沿海螺壳结构最下层的软相倾斜偏转,最终载荷达到卸载要求,裂纹停留在海螺壳结构的中间层。在45°样品裂纹扩展过程中,裂纹在经过砖泥结构软相后,沿着海螺壳单元45°倾斜软相继续萌生,导致其峰值载荷较大。60°样品的裂纹扩展路径由砖泥结构扩展到海螺壳结构中时由于角度较大无法沿着软相倾斜角度偏转,硬相直接垂直开裂,峰值载荷最小。15°样品由于倾斜角度过小,导致裂纹并未向倾斜软相偏转而发生塑性变形。从动态三点弯试验中可以看出,15°和30°试样出现了I字型裂纹,45°和60°试样出现了Y型裂纹。Y型裂纹的起裂功比I型裂纹的起裂功大。从落锤实验中可以看出,发生了两种破坏模式,冲击速度增大至一定范围内结构的有效比吸能不再继续增加,吸能效率随无量纲冲量的增大先增大后减小。结 论:(1)在较低的应变率下,45°样品强度高,吸能效果好,30°样品断裂韧性较好;在较高应变率下,45°样品强度与韧性较好;(2)不同应变率下结构产生裂纹的路径不同,低应变率下裂纹沿砖泥结构软相偏转,后发生界面分层,再向海螺壳结构倾斜的软相偏转;较高应变率时,裂纹通过硬相材料和软相材料同时传播,倾斜角度小时裂纹呈I字形扩展,倾斜角度大时裂纹呈Y字形扩展,Y字形扩展时,消耗的能量更多;(3)落锤实验表明,当冲击速度达到1.8m/s时,继续增加冲击速度至2.0m/s对仿海螺壳-珍珠贝壳结构的动态响应无明显影响。结构起裂前吸收的能量和起裂后吸收的能量在总吸能中的占比趋于稳定。这是由于界面分层吸收了更多的能量。在一定冲量范围内,结构在临界冲击速度时吸能效率最大。 Abstract: Based on the static three-point bending and dynamic three-point bending experiments, the influence of the inclined angle of the conch shell element on the fracture behavior of the specimen under different strain rates was studied. Four groups of samples were prepared by 3D printing using two kinds of matrix materials, soft phase and hard phase. Based on quasi-static and dynamic three-point bending impact experiments, the load-displacement curves and initiation work of four groups of samples were obtained. The results show that the structure has different crack deflection paths under different strain rates. At lower strain rates, the 45 ° sample has higher strength, better energy absorption effect and better fracture toughness; At higher strain rate, the strength and toughness of 45° samples are better. Finally, through the drop weight experiment, the influence of different impact speeds on the failure of the mixed design structural plate was studied, and the critical failure speed and two failure modes were obtained. The drop weight experiment shows that when the impact velocity reaches 1.8 m/s, further increasing the impact velocity to 2.0 m/s has no obvious effect on the dynamic response of the structure. The proportion of the energy absorbed before the crack initiation and the energy absorbed after the crack initiation in the total energy absorption tends to be stable. -
表 1 不同冲击速度下海螺壳结构基本单元倾斜角度为45°的仿海螺壳-珍珠贝壳复合结构(Design-1)和单一设计的珍珠贝壳层砖泥结构(Design-2)落锤测试结果
Table 1. Drop hammer test results of the sea snail shell like pearl shell composite structure (Design-1) and the single designed pearl shell layer brick mud structure (Design-2) with the basic unit inclination angle of 45° under different impact velocities
No. Composite type Impact velocity/
(m·s−1)Max load/
kNMax deflection/
mmResidual velocity/
(m·s−1)Perforated? Critical impact
energy/JDesign-1 1.3 0.752±0.1 8.9±0.4 0.0 No - 1.5 0.776±0.1 10.2±0.5 0.0 No - 1.6 0.794±0.1 14.6±1.5 0.08±0.1 Yes 6.1 1.7 0.825±0.1 13.9±1.1 0.25±0.1 Yes - 1.8 0.822±0.2 12.8±1.3 0.42±0.1 Yes - 2.0 0.836±0.1 12.2±0.8 0.55±0.2 Yes - Design-2 1.3 0.741±0.1 9.8±0.3 0.0 No - 1.5 0.762±0.1 10.9±0.4 0.09±0.1 Yes 5.4 2.0 0.818±0.1 8.9±0.5 0.61±0.3 Yes - -
[1] ZHOU B L. The biomimetic study of composite materials[J]. JOM,1994,46(2):57-62. doi: 10.1007/BF03222561 [2] ZHANG P, HEYNE M A, To A C. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3 D printing, and testing[J]. Journal of the Mechanics and Physics of Solids,2015,83:285-300. doi: 10.1016/j.jmps.2015.06.015 [3] 王振兴, 原梅妮, 李立州, 等. 贝壳珍珠母增韧机理研究进展 [J]. 材料导报, 2015, 29(15): 98-102.WANG Zhenxing, YUAN Meini, LI Lizhou, et al. Research progress on toughening mechanism of mother of pearl [J] Materials Guide, 2015, 29 (15): 98-102(in Chinese). [4] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016 (7): 728-734.MA Xiaoyong, LIANG Haiyi, WANG Lianfeng. Mechanical properties of three-dimensional printed shell bionic structure [J] Science Bulletin, 2016 (7): 728-734(in Chinese). [5] 邵浩彬, 朱军, 周琦, 等. 三角帆蚌贝壳的微结构及尺寸变化特征[J]. 复合材料学报, 2019, 36(10):2398-2406.SHAO Haobin, ZHU Jun, ZHOU Qi, et al. Microstructure and size change characteristics of Hyriopsis cumingii shells[J]. Acta Materiae Compositae,2019,36(10):2398-2406(in Chinese). [6] LI H, ShEN J, WEI Q, et al. Dynamic self-strengthening of a bio-nanostructured armor—conch shell[J]. Materials Science and Engineering:C,2019,103:109820. doi: 10.1016/j.msec.2019.109820 [7] HOU D F, ZHOU G S, ZHENG M. Conch shell structure and its effect on mechanical behaviors[J]. Biomaterials,2004,25(4):751-756. doi: 10.1016/S0142-9612(03)00555-6 [8] VAN Le T, GHAZLAN A, NGO T, et al. Performance of a bio-mimetic 3 D printed conch-like structure under quasi-static loading[J]. Composite Structures,2020,246:112433. doi: 10.1016/j.compstruct.2020.112433 [9] MENIG R, MEYERS M H, MEYERS M A, et al. Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells[J]. Materials Science and Engineering:A,2001,297(1-2):203-211. doi: 10.1016/S0921-5093(00)01228-4 [10] KAMAT S, SU X, BALLARINI R, et al. Structural basis for the fracture toughness of the shell of the conch Strombus gigas[J]. Nature,2000,405(6790):1036-1040. doi: 10.1038/35016535 [11] KUHN-SPEARING L T, KESSLER H, CHATEAU E, et al. Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates[J]. Journal of Materials Science,1996,31(24):6583-6594. doi: 10.1007/BF00356266 [12] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance[J]. Extreme Mechanics Letters,2016,9:317-323. doi: 10.1016/j.eml.2016.09.006 [13] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites[J]. Advanced Materials,2017,29(28):1700060. doi: 10.1002/adma.201700060 [14] JIA Z, YU Y, HOU S, et al. Biomimetic architected materials with improved dynamic performance[J]. Journal of the Mechanics and Physics of Solids,2019,125:178-197. doi: 10.1016/j.jmps.2018.12.015 [15] JIA Z, YU Y, WANG L. Learning from nature: Use material architecture to break the performance tradeoffs[J]. Materials & Design,2019,168:107650. [16] BARTHELAT F, TANG H, ZAVATTIERI P D, et al. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure[J]. Journal of the Mechanics and Physics of Solids,2007,55(2):306-337. doi: 10.1016/j.jmps.2006.07.007 [17] BRUET B J F, SONG J, BOYCE M C, et al. Materials design principles of ancient fish armour[J]. Nature materials,2008,7(9):748-756. doi: 10.1038/nmat2231 [18] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer[J]. Science,2012,336(6086):1275-1280. doi: 10.1126/science.1218764 [19] WANG B, YANG W, SHERMAN V R, et al. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales[J]. Acta biomaterialia,2016,41:60-74. doi: 10.1016/j.actbio.2016.05.028 [20] ŁODYGOWSKI T, RUSINEK A. Constitutive relations under impact loadings[M]. CISM International Centre for Mechanical Sciences, Udine, 2014. [21] WU X, MENG X, ZHANG H. An experimental investigation of the dynamic fracture behavior of 3 D printed nacre-like composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,112:104068. doi: 10.1016/j.jmbbm.2020.104068 [22] 马小敏, 李世强, 李鑫, 等. 编织Kevlar/Epoxy复合材料层合板在冲击荷载下的动态响应[J]. 爆炸与冲击, 2016, 36(2):170-176. doi: 10.11883/1001-1455(2016)02-0170-07MA Xiaomin, LI Shiqiang, LI Xin, et al. Dynamic response of braided Kevlar/Epoxy composite laminates under impact loading[J]. Explosion and Shocks Waves,2016,36(2):170-176(in Chinese). doi: 10.11883/1001-1455(2016)02-0170-07 -

计量
- 文章访问数: 147
- HTML全文浏览量: 100
- 被引次数: 0