留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干法缠绕用预浸纱制备工艺优化及其性能

余木火 王昊 余许多 戚亮亮 张辉 孙泽玉

余木火, 王昊, 余许多, 等. 干法缠绕用预浸纱制备工艺优化及其性能[J]. 复合材料学报, 2021, 39(0): 1-11
引用本文: 余木火, 王昊, 余许多, 等. 干法缠绕用预浸纱制备工艺优化及其性能[J]. 复合材料学报, 2021, 39(0): 1-11
Muhuo YU, Hao WANG, Xuduo YU, Liangliang QI, Hui ZHANG, Zeyu SUN. Preparation process optimization and performance of pre-impregnated yarn for dry winding[J]. Acta Materiae Compositae Sinica.
Citation: Muhuo YU, Hao WANG, Xuduo YU, Liangliang QI, Hui ZHANG, Zeyu SUN. Preparation process optimization and performance of pre-impregnated yarn for dry winding[J]. Acta Materiae Compositae Sinica.

干法缠绕用预浸纱制备工艺优化及其性能

基金项目: 上海市“科技创新行动计划”高新技术领域项目(19511106703;19511106601);中央高校基本科研业务费专项资金(2232020G-12) ;国家新材料生产与应用示范平台建设项目(CLPT - 2019 - 0016)
详细信息
    通讯作者:

    孙泽玉,博士,讲师,硕士生导师,研究方向为碳纤维复合材料低成本制造 E-mail: sunzeyu@dhu.edu.cn

  • 中图分类号: TB332; V214.8

Preparation process optimization and performance of pre-impregnated yarn for dry winding

  • 摘要: 干法缠绕是缠绕成型工艺的重要分支,其缠绕过程含胶量均匀,缠绕效率高,环境污染小,更容易实现工业自动化生产。开发具有良好加工性能的预浸纱,对干法缠绕的推广应用具有重要意义。通过动态DSC和恒温DSC,结合流变测试,研究了所用环氧树脂体系固化特性,基于自催化模型建立树脂固化反应动力学方程,并与实测固化度对比验证。搭建预浸纱制备平台,采用改进热熔法制备干法缠绕用预浸纱,分析制备过程中不同固化度对预浸纱表面质量的影响。在此基础上通过响应面法分析不同工艺参数(纱架张力、收卷速率、烘道温度)对预浸纱含胶量的影响。结果表明:自催化模型与实验结果基本吻合,适用于干法缠绕预浸纱最佳固化度范围为5%~10%,对含胶量影响最大的因子是收卷速率,其次是放纱张力,烘道温度影响最小。综合考虑各工艺参数影响规律,获得优化的制备工艺参数:烘道温度为180 ℃,收卷速率为8 m/min,放纱张力为6 N,此时树脂含胶量(质量分数)为30.1%。NOL环拉伸强度可达2536.1 MPa,拉伸模量为162.3 GPa,层间剪切强度为57.3 MPa。

     

  • 图  1  预浸纱制备流程图

    Figure  1.  Schematic diagram of prepreg preparation facility

    图  2  预浸纱制备所用设备:(a) 收卷机;(b) 五辊牵引机;(c) 烘道;(d) 浸胶槽;(e) 放纱架

    Figure  2.  Equipment for prepreg preparation: (a) Winder; (b) Five-roller tractor; (c) Oven; (d) Dipping tank; (e) Carbon fiber creel

    图  3  HY230环氧树脂体系非等温DSC曲线

    Figure  3.  Isothermal DSC curves of HY230 epoxy resin mixture systems

    图  4  HY230环氧树脂体系在不同升温速率下的固化度$ \alpha $与时间$ t $的关系

    Figure  4.  Conversion$ \alpha $of HY230 epoxy resin system plotted as a function of curing time $ t $ during the non-isothermal curing at indicated heating rates

    图  5  HY230环氧树脂体系在不同升温速率下的固化度$ \alpha $与温度$ T $的关系

    Figure  5.  Conversion$ \alpha $of HY230 epoxy resin system plotted as a function of temperature $ T $ during the non-isothermal curing at indicated heating rates

    图  6  HY230环氧树脂体系Kissinger方程的线性回归图

    Figure  6.  Plot for determining the activation energy of the curing reaction by Kissinger equation of HY230 epoxy resin system

    图  7  HY230环氧树脂体系固化度-温度-时间三维关系图

    Figure  7.  Three-dimensional relationship diagram of curing degree, temperature and time of HY230 epoxy resin system

    图  8  不同升温速率下HY230环氧树脂体系固化速率模型拟合线与实验值对比

    Figure  8.  Comparison of the calculated reaction rate (lines) and experimental data (symbols) for the epoxy HY230

    图  9  HY230环氧树脂体系等温固化实验结果与自催化模型预测对比

    Figure  9.  Comparison of the autocatalytic model fitting curves and observed data for the isothermal curing of the epoxy HY230

    图  10  HY230环氧树脂体系黏度-温度曲线

    Figure  10.  Viscosity-temperature curves of HY230 epoxy resin system

    图  11  不同温度下HY230环氧树脂的凝胶时间

    Figure  11.  The relationship of gel time and temperature of HY230 epoxy resin system

    图  12  不同固化度环氧树脂黏度-温度曲线

    Figure  12.  Viscosity-temperature curves of resin system with different curing degree resin system

    图  13  T700/HY230预浸纱含胶量实验值与预测值对比

    Figure  13.  Comparison of the experimental and predicted values of resin content in T700/HY230 prepreg yarn

    图  14  T700/HY230预浸纱含胶量三维响应曲面图

    Figure  14.  Three-dimensional response curve of resin content in T700/HY230 prepreg yarn

    图  15  不同工艺参数所制备的T700/HY230预浸纱量化评价

    Figure  15.  Quantitative evaluation of T700/HY230 prepreg yarn prepared with different process parameters

    图  16  长度2000 m的自制T700/H230预浸纱

    Figure  16.  Actual picture of the T700/HY230 prepreg yarn with a length of 2000 m

    表  1  HY-230树脂不同升温速度下特征温度

    Table  1.   Parameters for the non-isothermal curing reaction thermogram of HY230

    Heat rating β
    /(℃·min−1)
    Tonset
    /℃
    TP
    /℃
    Tend
    /℃
    5123162199
    10129185214
    15141189227
    20149197235
    Notes: Tonset—Temperature at onset point; TP—Temperature at peak point; Tend—Temperature at end point.
    下载: 导出CSV

    表  2  HY230环氧树脂体系多重线性回归参数

    Table  2.   Multiple linear regression parameters of HY230 epoxy resin system

    Heat rating/(℃·min−1)mnlnA
    51.030.0914.01
    100.950.0514.14
    150.740.1014.40
    200.840.0614.48
    下载: 导出CSV

    表  3  HY230环氧树脂适用期

    Table  3.   HY230 epoxy resin pot life

    Temperature/℃Gel time/hShelf life /d
    −188383.9174.6
    01257.826.2
    25131.92.7
    下载: 导出CSV

    表  4  不同固化度预浸纱制备实验方案

    Table  4.   Preparation experiment plan of prepregs with different curing degrees

    Curing degree
    /%
    Pulling speed
    /(m·min−1)
    Temperature
    /℃
    020
    50.5130
    102170
    150.5150
    201170
    250.5160
    下载: 导出CSV

    表  5  不同固化度预浸纱表面情况

    Table  5.   Surface quality of prepregs with different curing degrees

    Curing degree
    /%
    Wetness
    index
    Glutinosity
    0SeriousLow
    5Slightly moistSlightly adhesive
    10ModerateModerate
    15Slightly dryRelatively adhesive
    20Relatively drierSeriously adhesive
    25Tow curingNot sticky
    下载: 导出CSV

    表  6  预浸纱制备工艺参数

    Table  6.   Process parameters of prepreg yarn preparation

    ParameterPayoff
    tension/N
    Pulling speed/
    (m·min−1)
    Temperature/
    Range4-122-8140-180
    下载: 导出CSV

    表  7  预浸纱制备工艺Box-Behnken实验设计因素与水平

    Table  7.   Levels of factors by Box-Behnken design of prepreg yarn preparation

    CodeFactorLevel
    −101
    APayoff tension/N4812
    BPulling speed/(m·min−1)258
    CTemperature/℃140160180
    Notes:−1−Code of minimum value of process parameter range; 0−Code of middle value of process parameter range; 1−Code of maximum value of process parameter range.
    下载: 导出CSV

    表  8  预浸纱制备工艺Box-Behnken实验结果

    Table  8.   Results of Box-Behnken experiment for prepreg yarn preparation

    NumberABCResin content/%
    100030.62
    210127.77
    300032.08
    4−10130.97
    5−10−132.46
    611031.71
    700031.58
    810−130.92
    91−1027.58
    100−1127.10
    1100030.75
    1201−132.85
    130−1−127.26
    1400031.00
    1501131.33
    16−11033.98
    17−1−1029.73
    下载: 导出CSV

    表  9  T700/HY230含胶量模型方差分析

    Table  9.   Variance analysis of regression equation of T700/HY230 prepreg yarn

    SourceSum of squaresDfMean squareF-
    value
    P-
    value
    Signifi-
    cance
    Model63.7097.0817.290.0005**
    A- Payoff tension10.49110.4925.630.0015**
    B- Pulling speed41.41141.41101.17<0.0001***
    C- Temperature4.9914.9912.200.0101*
    AB0.003610.00360.00870.9279NS
    AC0.6910.691.680.2356NS
    BC0.4610.461.130.3231NS
    A20.2010.200.500.5041NS
    B21.9211.924.690.0669NS
    C23.3813.388.250.0239*
    Residual2.8670.41---
    Lack of fit1.3730.461.220.4118NS
    Pure error1.5040.37---
    Cor total66.5616----
    Notes:Df−Degree freedom; F-value−Ratio of the mean square to the residual term; P-value−Influence degree value of each factor;***−Significant in [-∞,0.0001]; **−Significant in [0.0001,0.01]; *−Significant in [0.01,0.05].
    下载: 导出CSV

    表  10  T700/H230预浸纱NOL环力学性能测试结果

    Table  10.   Interlaminar shear strength and tensile strength of T700/HY230 prepreg yarn NOL rings

    ParameterResin
    content/
    %
    Ring shear
    strength/
    GPa
    Tensile
    strength/
    MPa
    Tensile
    modulus/
    GPa
    Average value30.157.32536.1162.3
    Standard deviation0.94.376.641.1
    下载: 导出CSV
  • [1] PARK Y, HWANG T. K, CHUNG S, et al. Recent research trends in carbon fiber tow prepreg for advanced composites[J]. Journal of the Korean Society of Propulsion Engineers,2017,21(2):94-101. doi: 10.6108/KSPE.2017.21.2.094
    [2] 谢飞. 热熔法制备自动铺丝预浸纱的展开技术研究[D]. 南京: 南京航空航天大学, 2015.

    XIE Fei. Research on spreading technology in preparation of prepreg for automated fiber placement by hot-melt method [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese)
    [3] VANHATTUM F, NUNES J. P, BERNARDO C. A. A theoretical and experimental study of new towpreg-based Long fibre thermoplastic composites[J]. Composites Part A Applied Science and Manufacturing,2005,36(1):25-32. doi: 10.1016/j.compositesa.2004.06.031
    [4] POULADVAND A, MORTEZAEI M, JAHANI M. Carbon-epoxy towpreg: challenges, advantages and disadvantages [C]. The 5th National Seminar on Polymer, 2019.
    [5] MIKITINSKIY A. P, LOBOV B. N, VALYUKEVICH Y. A, et al. Selecting the engine power while the dry winding of the composite material[J]. Iop Conference Series:Materials Science and Engineering,2021,1029(1):12113.
    [6] 邱伟娟. M46J/QY8911-Ⅱ复合材料预浸纱制备与缠绕技术研究[D]. 南京: 南京航空航天大学, 2002.

    QIU Weijuan. Study on preparation of prepreg strands and filament winding technology of M46J/QY8911-Ⅱcomposite materials [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2002(in Chinese)
    [7] 欧汉文. 阻燃改性环氧树脂的研究及其预浸纱的开发[D]. 上海: 东华大学, 2020.

    OU Hanwen. Research on the flame retardant modified epoxy resin and the prepreg yarn [D]. Shanghai: Donghua University, 2020(in Chinese)
    [8] 陈浩然. T700/PEEK预浸纱制备的浸渍机理及工艺优化[D]: 南京: 南京航空航天大学, 2018.

    CHEN Haoran. Impregnation mechanism and craft optimization of T700/Peek prepreg processing [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese)
    [9] IRFAN M S, MACHAVARAM V, MAHENDRAN R S, et al. Lateral spreading of a fiber bundle via mechanical means[J]. Journal of Composite Materials,2011,46(3):311-330.
    [10] HOPMANN C, WILMS E, BESTE C, et al. Investigation of the influence of melt-impregnation parameters on the morphology of thermoplastic Ud-tapes and a method for quantifying the same[J]. Journal of Thermoplastic Composite Materials,2019:2147483647.
    [11] 蔡志强, 肖军, 文立伟, 等. 基于预浸纱自动铺放缺陷的分割算法[J]. 航空材料学报, 2017, 37(2): 21-27.

    CAI Zhiqiang, XIAO Jun, WEN Liwei, et al. Lgorithm of defect segmentation for AFP based on prepregs [J]. Journal of Aeronautical Materials, 017, 37(2): 21-27. (in Chinese)
    [12]
    [13] 陶雷, 闵伟, 戚亮亮, 等. 增韧改性环氧树脂固化动力学研究及TTT图绘制[J]. 复合材料科学与工程, 2020, 321(10):21-29. doi: 10.3969/j.issn.1003-0999.2020.10.003

    TAO Lei, MIN Wei, QI Liangliang, et al. Study on curing kinetics of toughened modified epoxy resin and drawing of TTT diagram[J]. Composite Materials Science and Engineering,2020,321(10):21-29(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.10.003
    [14] 胡建华. 含DOPO阻燃环氧树脂的固化动力学研究[D]. 广州: 华南理工大学, 2015.

    HU Jianhua. Curing kinetics of flame retardant epoxy resins with DOPO [D]. Guangzhou: South China University of Technology, 2015. (in Chinese)
    [15] NEUNKIRCHEN S, SCHLEDJEWSKI R. Tack measurement of bindered rovings for the dry fiber winding process[J]. Polymer Composites, 2021.
    [16] 高腾龙, 余建虎, 许英杰. 碳纤维/环氧树脂预浸料固化动力学建模研究[J]. 机械科学与技术: 1-8.

    GAO Tenglong, YU Jianhu1, XU Yingjie. Dynamic modeling of curing process of carbon/epoxy prepreg [J]. Mechanical Science and Technology for Aerospace Engineering: 1-8. (in Chinese)
    [17] 毕全瑞. 特高压电气设备用环氧树脂/氧化铝复合绝缘材料的固化动力学研究[D]. 合肥: 合肥工业大学, 2020.

    BI Quanrui. Curing kinetics of epoxy resin/alumina insulation composites for ultra high voltage electrical equipment [D]. Hefei: Hefei University of Technology, 2020 (in Chinese)
    [18] POULADVAND A. R, MORTEZAEI M, FATTAHI H, et al. A novel custom-tailored epoxy prepreg formulation based on epoxy-amine dual-curable systems[J]. Composites Part A:Applied Science and Manufacturing,2020,132:0-10.
    [19] POULADVAND A, MORTEZAEI M. Tack of prepreg: effective factors, methods of measurement and failure mechanism.[J]. Composites Science and Technology,2019,74(4):173-178.
    [20] 燕夏婧. 热塑性复合材料自动铺放设备工艺及曲面铺放研究[D]. 北京: 北京化工大学, 2019.

    YAN Xiajing. Research on automatic placement equipment and process and surface placement of thermoplastic composites [D]. Beijing: Beijing University of Chemical Technology, 2019. (in Chinese)
    [21] 宋涛. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与吸能特性研究[D]. 上海: 东华大学, 2021.

    SONG Tao. Axial compression response and energy absorption characteristics of thin-walled circular tubes containing variable stiffness carbon fiber/epoxy resin composite materials [D]. Shanghai: Donghua University, 2021(in Chinese)
  • 加载中
计量
  • 文章访问数:  153
  • HTML全文浏览量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 录用日期:  2021-12-03
  • 修回日期:  2021-11-23
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回