留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干法缠绕用预浸纱制备工艺优化及其性能

余木火 王昊 余许多 戚亮亮 张辉 孙泽玉

余木火, 王昊, 余许多, 等. 干法缠绕用预浸纱制备工艺优化及其性能[J]. 复合材料学报, 2022, 39(12): 5688-5698. doi: 10.13801/j.cnki.fhclxb.20211213.001
引用本文: 余木火, 王昊, 余许多, 等. 干法缠绕用预浸纱制备工艺优化及其性能[J]. 复合材料学报, 2022, 39(12): 5688-5698. doi: 10.13801/j.cnki.fhclxb.20211213.001
YU Muhuo, WANG Hao, YU Xuduo, et al. Preparation process optimization and performance of pre-impregnated yarn for dry winding[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5688-5698. doi: 10.13801/j.cnki.fhclxb.20211213.001
Citation: YU Muhuo, WANG Hao, YU Xuduo, et al. Preparation process optimization and performance of pre-impregnated yarn for dry winding[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5688-5698. doi: 10.13801/j.cnki.fhclxb.20211213.001

干法缠绕用预浸纱制备工艺优化及其性能

doi: 10.13801/j.cnki.fhclxb.20211213.001
基金项目: 上海市“科技创新行动计划”高新技术领域项目(19511106703;19511106601);中央高校基本科研业务费专项资金(2232020G-12) ;国家新材料生产与应用示范平台建设项目(CLPT-2019-0016)
详细信息
    通讯作者:

    孙泽玉,博士,讲师,硕士生导师,研究方向为碳纤维复合材料低成本制造 E-mail: sunzeyu@dhu.edu.cn

  • 中图分类号: TB332;V214.8

Preparation process optimization and performance of pre-impregnated yarn for dry winding

  • 摘要: 干法缠绕是缠绕成型工艺的重要分支,其缠绕过程含胶量均匀、缠绕效率高、环境污染小,更容易实现工业自动化生产。开发具有良好加工性能的预浸纱,对干法缠绕的推广应用具有重要意义。通过动态DSC和恒温DSC,结合流变测试,研究了所用环氧树脂体系固化特性,基于自催化模型建立树脂固化反应动力学方程,并与实测固化度对比验证。搭建预浸纱制备平台,采用改进热熔法制备干法缠绕用预浸纱,分析制备过程中不同固化度对预浸纱表面质量的影响。在此基础上通过响应面法分析不同工艺参数(纱架张力、收卷速率、烘道温度)对预浸纱含胶量的影响。结果表明:自催化模型与实验结果基本吻合,适用于干法缠绕预浸纱最佳固化度范围为5%~10%,对含胶量影响最大的因子是收卷速率,其次是放纱张力,烘道温度影响最小。综合考虑各工艺参数影响规律,获得优化的制备工艺参数:烘道温度为180℃,收卷速率为8 m/min,放纱张力为6 N,此时树脂含胶量为30.1wt%。NOL环拉伸强度可达2536.1 MPa,拉伸模量为162.3 GPa,层间剪切强度为57.3 MPa。

     

  • 图  1  预浸纱制备流程图

    Figure  1.  Schematic diagram of prepreg preparation facility

    图  2  预浸纱制备所用设备:(a) 收卷机;(b) 五辊牵引机;(c) 烘道;(d) 浸胶槽;(e) 放纱架

    Figure  2.  Equipment for prepreg preparation: (a) Winder; (b) Five-roller tractor; (c) Oven; (d) Dipping tank; (e) Carbon fiber creel

    图  3  HY230环氧树脂体系非等温DSC曲线

    Figure  3.  Isothermal DSC curves of HY230 epoxy resin mixture systems

    图  4  HY230环氧树脂体系在不同升温速率下的固化度$ \alpha $与时间$ t $的关系

    Figure  4.  Relationship between curing degree $ \alpha $ and curing time t of HY230 epoxy resin system at different heating rates

    图  5  HY230环氧树脂体系在不同升温速率下固化度$ \alpha $与温度T的关系

    Figure  5.  Relationship between curing degree $ \alpha $ and temperature T of HY230 epoxy resin system at different heating rates

    图  6  HY230环氧树脂体系Kissinger方程的线性回归图

    Figure  6.  Plot for determining the activation energy of the curing reaction by Kissinger equation of HY230 epoxy resin system

    图  7  HY230环氧树脂体系固化度-温度-时间三维关系图

    Figure  7.  Three-dimensional relationship diagram of curing degree-temperature-time of HY230 epoxy resin system

    图  8  不同升温速率下HY230环氧树脂体系固化速率模型拟合线与实验值对比

    Figure  8.  Comparison of the calculated reaction rate (lines) and experimental data (symbols) for the epoxy HY230

    图  9  HY230环氧树脂体系等温固化实验结果与自催化模型预测对比

    Figure  9.  Comparison of the autocatalytic model fitting curves and observed data for the isothermal curing of the epoxy HY230

    图  10  HY230环氧树脂体系黏度-温度曲线

    Figure  10.  Viscosity-temperature curve of HY230 epoxy resin system

    图  11  HY230环氧树脂体系凝胶时间与温度的关系

    Figure  11.  Relationship of gel time and temperature of HY230 epoxy resin system

    图  12  不同固化度环氧树脂黏度-温度曲线

    Figure  12.  Viscosity-temperature curves of resin system with different curing degree resin system

    图  13  T700/HY230预浸纱含胶量实验值与预测值对比

    Figure  13.  Comparison of the experimental and predicted values of resin content in T700/HY230 prepreg yarn

    图  14  T700/HY230预浸纱含胶量三维响应曲面图

    Figure  14.  Three-dimensional response surface of resin content in T700/HY230 prepreg yarn

    图  15  不同工艺参数所制备的T700/HY230预浸纱量化评价

    Figure  15.  Quantitative evaluation of T700/HY230 prepreg yarn prepared with different process parameters

    图  16  长度2000 m的自制T700/H230预浸纱

    Figure  16.  Actual picture of the T700/HY230 prepreg yarn with a length of 2000 m

    表  1  HY-230树脂不同升温速度下特征温度

    Table  1.   Parameters for the non-isothermal curing reaction thermogram of HY230

    Heat rating β
    /(℃·min−1)
    Tonset
    /℃
    TP
    /℃
    Tend
    /℃
    5123162199
    10129185214
    15141189227
    20149197235
    Notes: Tonset—Temperature at onset point; TP—Temperature at peak point; Tend—Temperature at end point.
    下载: 导出CSV

    表  2  HY230环氧树脂体系多重线性回归参数

    Table  2.   Multiple linear regression parameters of HY230 epoxy resin system

    Heat rating/(℃·min−1)mnlnA
    51.030.0914.01
    100.950.0514.14
    150.740.1014.40
    200.840.0614.48
    下载: 导出CSV

    表  3  HY230环氧树脂适用期

    Table  3.   HY230 epoxy resin pot life

    Temperature/℃Gel time/hShelf life/d
    −18 8383.9 174.6
    0 1257.8 26.2
    25 131.9 2.7
    下载: 导出CSV

    表  4  不同固化度预浸纱制备实验方案

    Table  4.   Preparation experiment plan of prepregs with different curing degrees

    Curing degree
    /%
    Pulling speed
    /(m·min−1)
    Temperature
    /℃
    0 2 0
    5 0.5 130
    10 2 170
    15 0.5 150
    20 1 170
    25 0.5 160
    下载: 导出CSV

    表  5  不同固化度预浸纱表面情况

    Table  5.   Surface quality of prepregs with different curing degrees

    Curing degree
    /%
    Wetness
    index
    Glutinosity
    0 Serious Low
    5 Slightly moist Slightly adhesive
    10 Moderate Moderate
    15 Slightly dry Relatively adhesive
    20 Relatively drier Seriously adhesive
    25 Tow curing Not sticky
    下载: 导出CSV

    表  6  预浸纱制备工艺参数

    Table  6.   Process parameters of prepreg yarn preparation

    ParameterPayoff
    tension/N
    Pulling speed/
    (m·min−1)
    Temperature/
    Range4-122-8140-180
    下载: 导出CSV

    表  7  预浸纱制备工艺Box-Behnken实验设计因素与水平

    Table  7.   Levels of factors by Box-Behnken design of prepreg yarn preparation

    CodeFactorLevel
    −101
    APayoff tension/N4812
    BPulling speed/(m·min−1)258
    CTemperature/℃140160180
    Notes: −1—Code of minimum value of process parameter range; 0—Code of middle value of process parameter range; 1—Code of maximum value of process parameter range.
    下载: 导出CSV

    表  8  预浸纱制备工艺Box-Behnken实验结果

    Table  8.   Results of Box-Behnken experiment for prepreg yarn preparation

    NumberPayoff tension/NPulling speed/
    (m·min−1)
    Tempera-ture/℃Resin content/%
    1 0 0 0 30.62
    2 1 0 1 27.77
    3 0 0 0 32.08
    4 −1 0 1 30.97
    5 −1 0 −1 32.46
    6 1 1 0 31.71
    7 0 0 0 31.58
    8 1 0 −1 30.92
    9 1 −1 0 27.58
    10 0 −1 1 27.10
    11 0 0 0 30.75
    12 0 1 −1 32.85
    13 0 −1 −1 27.26
    14 0 0 0 31.00
    15 0 1 1 31.33
    16 −1 1 0 33.98
    17 −1 −1 0 29.73
    下载: 导出CSV

    表  9  T700/HY230含胶量模型方差分析

    Table  9.   Variance analysis of regression equation of T700/HY230 prepreg yarn

    SourceSum of squaresDfMean squareF-
    value
    P-
    value
    Signifi-
    cance
    Model63.7097.0817.290.0005**
    A10.49110.4925.630.0015**
    B41.41141.41101.17<0.0001***
    C4.9914.9912.200.0101*
    AB0.003610.00360.00870.9279-
    AC0.6910.691.680.2356-
    BC0.4610.461.130.3231-
    A20.2010.200.500.5041-
    B21.9211.924.690.0669-
    C23.3813.388.250.0239*
    Residual2.8670.41---
    Lack of fit1.3730.461.220.4118-
    Pure error1.5040.37---
    Cor total66.5616----
    Notes: Df—Degree freedom; F-value—Ratio of the mean square to the residual term; P-value—Influence degree value of each factor; ***—Significant in [−∞, 0.0001]; **—Significant in [0.0001, 0.01]; *—Significant in [0.01, 0.05].
    下载: 导出CSV

    表  10  T700/H230预浸纱NOL环力学性能测试结果

    Table  10.   Interlaminar shear strength and tensile strength of T700/HY230 prepreg yarn NOL rings

    ParameterResin
    content/
    wt%
    Ring shear
    strength/
    GPa
    Tensile
    strength/
    MPa
    Tensile
    modulus/
    GPa
    Average value 30.1 57.3 2536.1 162.3
    Standard deviation 0.9 4.3 76.6 41.1
    下载: 导出CSV
  • [1] PARK Y, HWANG T K, CHUNG S, et al. Recent research trends in carbon fiber tow prepreg for advanced compo-sites[J]. Journal of the Korean Society of Propulsion Engineers,2017,21(2):94-101. doi: 10.6108/KSPE.2017.21.2.094
    [2] 谢飞. 热熔法制备自动铺丝预浸纱的展开技术研究[D]. 南京: 南京航空航天大学, 2015.

    XIE Fei. Research on spreading technology in preparation of prepreg for automated fiber placement by hot-melt method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [3] VANHATTUM F, NUNES J P, BERNARDO C A. A theoretical and experimental study of new towpreg-based long fibre thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2005,36(1):25-32. doi: 10.1016/j.compositesa.2004.06.031
    [4] POULADVAND A, MORTEZAEI M, JAHANI M. Carbon-epoxy towpreg: Challenges, advantages and disadvantages[C]. ISFAHAN: The 5th National Seminar on Polymer, 2019.
    [5] MIKITINSKIY A P, LOBOV B N, VALYUKEVICH Y A, et al. Selecting the engine power while the dry winding of the composite material[J]. Iop Conference Series: Materials Science and Engineering,2021,1029(1):12113.
    [6] 邱伟娟. M46J/QY8911-II复合材料预浸纱制备与缠绕技术研究[D]. 南京: 南京航空航天大学, 2002.

    QIU Weijuan. Study on preparation of prepreg strands and filament winding technology of M46J/QY8911-II compo-site materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2002(in Chinese).
    [7] 欧汉文. 阻燃改性环氧树脂的研究及其预浸纱的开发[D]. 上海: 东华大学, 2020.

    OU Hanwen. Research on the flame retardant modified epoxy resin and the prepreg yarn[D]. Shanghai: Donghua University, 2020(in Chinese).
    [8] 陈浩然. T700/PEEK预浸纱制备的浸渍机理及工艺优化[D]: 南京: 南京航空航天大学, 2018.

    CHEN Haoran. Impregnation mechanism and craft optimization of T700/PEEK prepreg processing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [9] IRFAN M S, MACHAVARAM V, MAHENDRAN R S, et al. Lateral spreading of a fiber bundle via mechanical means[J]. Journal of Composite Materials,2011,46(3):311-330.
    [10] HOPMANN C, WILMS E, BESTE C, et al. Investigation of the influence of melt-impregnation parameters on the morphology of thermoplastic Ud-tapes and a method for quantifying the same[J]. Journal of Thermoplastic Composite Materials,2019, 34(9)::1299-1312.
    [11] 蔡志强, 肖军, 文立伟, 等. 基于预浸纱自动铺放缺陷的分割算法[J]. 航空材料学报, 2017, 37(2): 21-27.

    CAI Zhiqiang, XIAO Jun, WEN Liwei, et al. Lgorithm of defect segmentation for AFP based on prepregs [J]. Journal of Aeronautical Materials, 2017, 37(2): 21-27(in Chinese).
    [12] 文立伟, 王若舟, 谢飞. 通过调节工艺参数控制热熔法制备的自动铺丝预浸纱的展开质量[J]. 材料导报, 2019, 33(S2):599-603.

    WEN Liwei, WANG Ruozhou, XIE Fei. Improving lateral spreading quality by adjusting hot-melt process parameters applied in automated fiber placement[J]. Materials Reports,2019,33(S2):599-603(in Chinese).
    [13] 中国国家标准化管理委员会. 纤维缠绕增强塑料环形试样力学性能试验方法: GB/T 1458—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test method for mechanical properties of ring of filament-winding reinforced plastics: GB/T 1458—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [14] 陶雷, 闵伟, 戚亮亮, 等. 增韧改性环氧树脂固化动力学研究及TTT图绘制[J]. 复合材料科学与工程, 2020, 321(10):21-29. doi: 10.3969/j.issn.1003-0999.2020.10.003

    TAO Lei, MIN Wei, QI Liangliang, et al. Study on curing kinetics of toughened modified epoxy resin and drawing of TTT diagram[J]. Composite Materials Science and Engineering,2020,321(10):21-29(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.10.003
    [15] 胡建华. 含DOPO阻燃环氧树脂的固化动力学研究[D]. 广州: 华南理工大学, 2015.

    HU Jianhua. Curing kinetics of flame retardant epoxy resins with DOPO[D]. Guangzhou: South China University of Technology, 2015(in Chinese).
    [16] NEUNKIRCHEN S, SCHLEDJEWSKI R. Tack measurement of bindered rovings for the dry fiber winding process[J]. Polymer Composites, 2021: 42(9): 4607-4616.
    [17] 高腾龙, 余建虎, 许英杰. 碳纤维/环氧树脂预浸料固化动力学建模研究[J]. 机械科学与技术, 2022, 41(7): 1128-1137.

    GAO Tenglong, YU Jianhu, XU Yingjie. Dynamic modeling of curing process of carbon/epoxy prepreg [J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1128-1137(in Chinese).
    [18] 毕全瑞. 特高压电气设备用环氧树脂/氧化铝复合绝缘材料的固化动力学研究[D]. 合肥: 合肥工业大学, 2020.

    BI Quanrui. Curing kinetics of epoxy resin/alumina insulation composites for ultra high voltage electrical equipment[D]. Hefei: Hefei University of Technology, 2020(in Chinese).
    [19] POULADVAND A R, MORTEZAEI M, FATTAHI H, et al. A novel custom-tailored epoxy prepreg formulation based on epoxy-amine dual-curable systems[J]. Composites Part A: Applied Science and Manufacturing,2020,132:105852.
    [20] POULADVAND A, MORTEZAEI M. Tack of prepreg: Effective factors, methods of measurement and failure mechanism[J]. Composites Science and Technology,2019,74(4):173-178.
    [21] 燕夏婧. 热塑性复合材料自动铺放设备工艺及曲面铺放研究[D]. 北京: 北京化工大学, 2019.

    YAN Xiajing. Research on automatic placement equipment and process and surface placement of thermoplastic composites[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
    [22] 宋涛. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与吸能特性研究[D]. 上海: 东华大学, 2021.

    SONG Tao. Axial compression response and energy absorption characteristics of thin-walled circular tubes containing variable stiffness carbon fiber/epoxy resin composite materials[D]. Shanghai: Donghua University, 2021(in Chinese).
  • 加载中
图(16) / 表(10)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  762
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2021-11-23
  • 录用日期:  2021-12-03
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回