留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米材料在电化学传感器检测抗生素中的应用进展

姚聪聪 魏坚强 林金玉 陆秋月 钱君超 陈丰

姚聪聪, 魏坚强, 林金玉, 等. 纳米材料在电化学传感器检测抗生素中的应用进展[J]. 复合材料学报, 2023, 40(1): 51-61. doi: 10.13801/j.cnki.fhclxb.20220412.001
引用本文: 姚聪聪, 魏坚强, 林金玉, 等. 纳米材料在电化学传感器检测抗生素中的应用进展[J]. 复合材料学报, 2023, 40(1): 51-61. doi: 10.13801/j.cnki.fhclxb.20220412.001
YAO Congcong, WEI Jianqiang, LIN Jinyu, et al. Application progress of nano-materials in detection of antibiotics by electrochemical sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 51-61. doi: 10.13801/j.cnki.fhclxb.20220412.001
Citation: YAO Congcong, WEI Jianqiang, LIN Jinyu, et al. Application progress of nano-materials in detection of antibiotics by electrochemical sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 51-61. doi: 10.13801/j.cnki.fhclxb.20220412.001

纳米材料在电化学传感器检测抗生素中的应用进展

doi: 10.13801/j.cnki.fhclxb.20220412.001
基金项目: 江苏省自然科学基金(BK20180103);常熟市社会发展项目(CS202008);江苏高校水处理技术与材料协同创新中心预研课题资助
详细信息
    通讯作者:

    陈丰,博士,副教授,硕士生导师,研究方向为环境功能材料与催化材料 E-mail:chenfeng@mail.usts.edu.cn

  • 中图分类号: TB3333

Application progress of nano-materials in detection of antibiotics by electrochemical sensors

Funds: Jiangsu Natural Science Foundation(BK20180103); Changshu Social Development Project(CS202008); Pre-research Project Funded by Jiangsu University Water Treatment Technology and Materials Collaborative Innovation Center
  • 摘要: 抗生素自发现至今,由于其可以阻碍细菌的生长,被广泛应用于预防和治疗细菌的感染疾病上。但是抗生素在畜牧业、农业等方面的滥用滥排导致抗生素污染,极大地威胁水源地的安全,导致细菌耐药性增强、给环境及人类健康带来重大的危害。因此,抗生素的检测近年来得到了广泛的关注,而大多抗生素都具有电化学活性。基于此,纳米修饰电极可以使抗生素在电解质中的电化学氧化或还原反应增强,从而促进其灵敏度的提高,使电化学传感器可以检测到各类抗生素。本文详细介绍了用于检测抗生素的各种纳米材料修饰电极的电化学传感器及其性能。最后,讨论了纳米材料电化学传感器在抗生素检测中面临的挑战和发展前景。

     

  • 图  1  (a) 铂纳米球制备示意图/玻碳电极(GCE)表面修饰;(b) 裸GCE的SEM图像;(c) 聚糠醛膜修饰GCE的SEM图像;((d)、(e)) 铂纳米球/聚糠醛膜修饰GCE的SEM图像;(f) 铂纳米球/聚糠醛膜/GCE的高倍SEM图像;((g)、(h)) 各电极的循环伏安(CV) 和差分脉冲伏安(DPV)曲线

    Figure  1.  (a) Preparation schematic diagram of platinum nanospheres/glassy carbon electrode (GCE) surface modification; (b) SEM image of naked GCE; (c) SEM image of GCE modified by polyfurfural film; ((d), (e)) SEM images of GCE modified by platinum nanosphere/polyfurfural film; (f) High power SEM image of platinum nanospheres/polyfurfural films /GCE; ((g), (h)) Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) curves of electrodes

    1—Bare GCE; 2—Pt nanospheres/GCE; 3—Polyfurfural film/GCE; 4—Pt nanospheres/polyfurfural film/GCE; 5—Pt nanospheres/polyfurfural film/GCE without metronidazole; 6—Bare platinum electrode; I—Current; E—Potential

    图  2  氧化石墨烯(GO)/ZnO改性GCE制备示意图[30]

    Figure  2.  Schematic diagram of graphene oxide (GO)/ZnO modified GCE preparation[30]

    图  3  ((a)、(b)) CdTe-炭黑(CB)-壳聚糖(CTS)的TEM图像和放大图像;((c)、(d)) CdTe 量子点(QDs)的TEM图像和放大图像;(e) 裸GCE、CB-CTS∶环氧氯丙烷(EPH)/GCE和CdTe CB-CTS∶EPH/GCE电极在0.1 mol·L−1的磷酸盐缓冲液中,pH=6.0的条件下的CV曲线;(f) 诺氟沙星(NOR)的氧化反应

    Figure  3.  ((a), (b)) TEM image and enlarged image of CdTe-carbon black (CB)-chitosan (CTS); ((c), (d)) TEM image and enlarged image of CdTe quantum dot (QDs); (e) CV curves of naked GCE, CB-CTS∶Epichlorohydrin (EPH)/GCE and CdTe CB-CTS∶EPH/GCE electrodes in 0.1 mol·L−1 phosphate buffer at pH=6.0; (f) Oxidation reaction of norfloxacin (NOR)

    1—Naked GCE; 2—CB-CTS∶EPH/GCE; 3—CdTe CB-CTS∶EPH/GCE

    图  4  用于检测氨苄青霉素(AMP) 的MIPs EC传感器构造过程示意图[52]:(a) 碳布示意图;(b) AMP与N,N-二甲基丙烯酰胺(NNDMA)自组装机制图

    Figure  4.  Schematic diagram of MIPs EC sensor construction process for detecting ampicillin (AMP)[52]: (a) Schematic diagram of carbon fiber cloth; (b) Self-assembly mechanism diagram with AMP and N, N-dimethylacrylamide (NNDMA)

    CC—Carbon cloth; MIP—Molecularly imprinted polymers; NNDMA—N,N-dimethyl acrylamide; MAA—Methacrylic acid; EDMA—Ethyleneglycol dimethacrylate; AIBN—Azodiisobutyronitrile; NIP—Synthesis of non-template polymers

    图  5  石墨烯纳米片(GNPs)和分子印迹聚合物 (MIPs)制备和检测过程示意图[55]

    Figure  5.  Schematic diagram of preparation and detection process of graphene nanosheets (GNPs) and molecularly imprinted polymers (MIPs)[55]

    MNZ—Metronidazole; GQDs—Graphene quantum dots; APTES—3-aminopropyltriethoxysilane; TEOS—Tetraethoxysilane; DPV—Differential pulse voltammetry

    图  6  MoS2-TiO2@Au纳米材料的制备及检测示意图[58]

    Figure  6.  Schematic diagram of preparation and detection of MoS2-TiO2@Au nanomaterials[58]

    HRP—Horseradish peroxidase; NPs—Nano particles; bio-cDNA—Biology- complementary DNA; TET—Tetracycline; HQ—Hydroquinone; BQ—Benzoquinone; SCE—Saturated calomel electrode

    表  1  常见抗生素

    Table  1.   Common antibiotics

    Types of antibioticsName
    Sulfa[6]Sulfonazole, sulfamethoxazole, sulfadiazine, sulfamethoxazole, etc.
    Tetracycline class[7]Tetracycline, oxytetracycline, chlortetracycline, etc.
    Macrolide[8]Erythromycin, roxithromycin, azithromycin, clarithromycin, dirithromycin, fluoroerythromycin, telithromycin, etc.
    β-lactams[9] penicillin, oxacillin, ampicillin, carbenicillin, piperacillin, cefazolin, cefuroxime, cefotaxime, cefepime, etc.
    Amino glycosides[10]Streptomycin, kanamycin, neomycin, tobramycin, gentamicin, amikacin, etc.
    Quinolones[11]Ofloxacin, pefloxacin, norfloxacin and ciprofloxacin, etc.
    OtherMetronidazole, vancomycin, lincomycin, clindamycin, etc.
    下载: 导出CSV
  • [1] AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges[J]. Science of the Total Environment,2015,532:112-126. doi: 10.1016/j.scitotenv.2015.05.130
    [2] SEMAIL N F, ABDUL KEYON A S, SAAD B, et al. Simultaneous preconcentration and determination of sulfonamide antibiotics in milk and yoghurt by dynamic pH junction focusing coupled with capillary electrophoresis[J]. Talanta,2022,236:122833. doi: 10.1016/j.talanta.2021.122833
    [3] SONG X, XIE J, ZHANG M, et al. Simultane ous determination of eight cyclopolypeptide antibiotics in feed by high performance liquid chromatography coupled with evaporation light scattering detection[J]. Journal of Chromatography B,2018,1076:103-109. doi: 10.1016/j.jchromb.2018.01.020
    [4] HUANG Y, YE D, YANG J, et al. A novel dual-signal molecularly imprinted electrochemical sensor based on NiFe prussian blue analogue and SnS2 for detection of p-hydroxyacetophenone[J]. Chemical Engineering Journal,2022,435:134981. doi: 10.1016/j.cej.2022.134981
    [5] 王黎明. 四氧化三钴纳米材料的制备及其电化学性能研究[D]. 武汉: 华中科技大学, 2013.

    WANG Liming. Preparation and electrochemical properties of Co3O4 nanomaterials[D]. Wuhan: Huazhong University of Science and Technology, 2013(in Chinese).
    [6] QIU D, WANG X, WEN Y, et al. A low-cost wireless intelligent portable sensor based on disposable laser-induced porous graphene flexible electrode decorated by gold nanoshells for rapid detection of sulfonamides in aquatic products[J]. Food Analytical Methods, 2022, 15: 1471-1481.
    [7] RAYKOVA M R, CORRIGAN D K, HOLDSWORTH M, et al. Emerging electrochemical sensors for real-time detection of tetracyclines in milk[J]. Biosensors (Basel),2021,11(7):232. doi: 10.3390/bios11070232
    [8] PAN Y, SHAN D, DING L L, et al. Developing a generally applicable electrochemical sensor for detecting macrolides in water with thiophene-based molecularly imprinted polymers[J]. Water Research,2021,205:117670. doi: 10.1016/j.watres.2021.117670
    [9] MORO G, BOTTARI F, SLEEGERS N, et al. Conductive imprinted polymers for the direct electrochemical detection of β-lactam antibiotics: The case of cefquinome[J]. Sensors and Actuators B: Chemical,2019,297:126786. doi: 10.1016/j.snb.2019.126786
    [10] ZAREI K, GHORBANI M. Fabrication of a new ultrasensitive AuNPs-MIC-based sensor for electrochemical determination of streptomycin[J]. Electrochimica Acta,2019,299:330-338. doi: 10.1016/j.electacta.2019.01.016
    [11] PHAM T D M, ZIORA Z M, BLASKOVICH M A T. Quinolone antibiotics[J]. Medchemcomm,2019,10(10):1719-1739. doi: 10.1039/C9MD00120D
    [12] JOHN A, BENNY L, CHERIAN A R, et al. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review[J]. Journal of Nanostructure in Chemistry,2021,11(1):1-31. doi: 10.1007/s40097-020-00372-8
    [13] GONZÁLEZ FÁ A, PIGNANELLI F, LÓPEZ-CORRAL I, et al. Detection of oxytetracycline in honey using SERS on silver nanoparticles[J]. TrAC Trends in Analytical Chemistry,2019,121:115673. doi: 10.1016/j.trac.2019.115673
    [14] LI L, LIU X, YANG L, et al. Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor[J]. Biosensors and Bioelectronics,2019,142:111525. doi: 10.1016/j.bios.2019.111525
    [15] KUMAR N, ROSY, GOYAL R N. Gold-palladium nanoparticles aided electrochemically reduced graphene oxide sensor for the simultaneous estimation of lomefloxacin and amoxicillin[J]. Sensors and Actuators B: Chemical,2017,243:658-668. doi: 10.1016/j.snb.2016.12.025
    [16] HUANG J, SHEN X, WANG R, et al. A highly sensitive metronidazole sensor based on a Pt nanospheres/polyfurfural film modified electrode[J]. RSC Advances,2017,7(1):535-542. doi: 10.1039/C6RA25106D
    [17] GAN T, SHI Z, SUN J, et al. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged montmorillonite catalyst[J]. Talanta,2014,121:187-193. doi: 10.1016/j.talanta.2014.01.002
    [18] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature,2000,407(6803):496-499. doi: 10.1038/35035045
    [19] MANJULA N, PULIKKUTTY S, CHEN T W, et al. Electrochemical sensor based on cerium niobium oxide nanoparticles modified electrode for sensing of environmental toxicity in water samples[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,637:128277. doi: 10.1016/j.colsurfa.2022.128277
    [20] GUO S, LI Y, LI B, et al. Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries[J]. Journal of the American Chemical Society,2022,144(5):2179-2188. doi: 10.1021/jacs.1c10872
    [21] SHEN X, WANG T, WEI X, et al. Facile synthesis of metal oxide and conductive polymers around silicon nanowire arrays for a high-performance aqueous supercapacitor[J]. ACS Applied Energy Materials,2022,5(2):2596-2605. doi: 10.1021/acsaem.2c00066
    [22] GUAN H, CAI P, ZHANG X, et al. Cu2O templating strategy for the synthesis of octahedral Cu2O@Mn(OH)2 core-shell hierarchical structures with a superior performance supercapacitor[J]. Journal of Materials Chemistry A,2018,6(28):13668-13675. doi: 10.1039/C8TA01828F
    [23] ZHENG Y, ZHANG L, GUAN J, et al. Controlled synthesis of CuO/Cu2O for efficient photothermal catalytic conversion of CO2 and H2O[J]. ACS Sustainable Chemistry & Engineering,2021,9(4):1754-1761.
    [24] GU W, ZHENG W, LIU H, et al. Electroactive Cu2O nanocubes engineered electrochemical sensor for H2S detection[J]. Analytica Chimica Acta,2021,1150:338216. doi: 10.1016/j.aca.2021.338216
    [25] WU F, XU F, CHEN L, et al. Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination[J]. Chemical Research in Chinese Universities,2016,32(3):468-473. doi: 10.1007/s40242-016-5367-4
    [26] SHABANI-NOOSHABADI M, ROOSTAEE M. Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis[J]. Journal of Molecular Liquids,2016,220:329-333. doi: 10.1016/j.molliq.2016.05.001
    [27] SALMANPOUR S. An electrochemical sensitive sensor for determining sulfamethoxazole using a modified electrode based on biosynthesized NiO nanoparticles paste electrode[J]. International Journal of Electrochemical Science,2019,14:9552-9561.
    [28] LU Y, SU L, QI J, et al. A combined DFT and experimental study on the nucleation mechanism of NiO nanodots on graphene[J]. Journal of Materials Chemistry A,2018,6(28):13717-13724. doi: 10.1039/C8TA03451F
    [29] ARFIN T, RANGARI S N. Graphene oxide-ZnO nanocomposite modified electrode for the detection of phenol[J]. Analytical Methods,2018,10(3):347-358. doi: 10.1039/C7AY02650A
    [30] SEBASTIAN N, YU W C, BALRAM D. Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene oxide/hierarchical zinc oxide nanocomposite[J]. Inorganic Chemistry Frontiers,2019,6(1):82-93. doi: 10.1039/C8QI01000E
    [31] HUANG Q, LIN X, TONG L, et al. Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells[J]. ACS Sustainable Chemistry & Engineering,2020,8(3):1644-1650.
    [32] ARUMUGASAMY S K, GOVINDARAJU S, YUN K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes[J]. Applied Surface Science,2020,508:145294. doi: 10.1016/j.apsusc.2020.145294
    [33] LIN J, QIAN J, WANG Y, et al. Quantum dots@porous carbon platform for the electrochemical sensing of oxytetracycline[J]. Microchemical Journal,2021,167:106341. doi: 10.1016/j.microc.2021.106341
    [34] WU H, LI X, CHEN M, et al. A nanohybrid based on porphyrin dye functionalized graphene oxide for the application in non-enzymatic electrochemical sensor[J]. Electrochimica Acta,2018,259:355-364. doi: 10.1016/j.electacta.2017.10.122
    [35] DEVI N R, SASIDHARAN M, SUNDRAMOORTHY A K. Gold nanoparticles-thiol-functionalized reduced graphene oxide coated electrochemical sensor system for selective detection of mercury ion[J]. Journal of the Electrochemical Society,2018,165(8):B3046-B3053. doi: 10.1149/2.0081808jes
    [36] ZHANG X, ZHANG Y C, ZHANG J W. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures[J]. Talanta,2016,161:567-573. doi: 10.1016/j.talanta.2016.09.013
    [37] MARTINS T S, BOTT-NETO J L, OLIVEIRA JR O N, et al. Paper-based electrochemical sensors with reduced graphene nanoribbons for simultaneous detection of sulfamethoxazole and trimethoprim in water samples[J]. Journal of Electroanalytical Chemistry,2021,882:114985. doi: 10.1016/j.jelechem.2021.114985
    [38] TURSYNBOLAT S, BAKYTKARIM Y, HUANG J, et al. Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE[J]. Journal of Pharmaceutical Analysis,2018,8(2):124-130. doi: 10.1016/j.jpha.2017.11.001
    [39] CHEN Q, CHEN L, QI J, et al. Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: Effect of light wavelength[J]. Chinese Chemical Letters,2019,30(6):1214-1218. doi: 10.1016/j.cclet.2019.03.002
    [40] SANTOS A M, WONG A, CINCOTTO F H, et al. Square-wave adsorptive anodic stripping voltammetric determination of norfloxacin using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film[J]. Mikrochim Acta,2019,186(3):148. doi: 10.1007/s00604-019-3268-1
    [41] WONG A, SANTOS A M, CINCOTTO F H, et al. A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices[J]. Talanta,2020,206:120252. doi: 10.1016/j.talanta.2019.120252
    [42] LIU D, LI H J, LYU B, et al. Efficient performance enhancement of GaN-based vertical light-emitting diodes coated with N-doped graphene quantum dots[J]. Optical Materials,2019,89:468-472. doi: 10.1016/j.optmat.2019.01.026
    [43] LU L, ZHOU L, CHEN J, et al. Nanochannel-confined graphene quantum dots for ultrasensitive electrochemical analysis of complex samples[J]. ACS Nano,2018,12(12):12673-12681. doi: 10.1021/acsnano.8b07564
    [44] QIN L, ZENG G, LAI C, et al. “Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing[J]. Coordination Chemistry Reviews,2018,359:1-31. doi: 10.1016/j.ccr.2018.01.006
    [45] SINGH E, MEYYAPPAN M, NALWA H S. Flexible graphene-based wearable gas and chemical sensors[J]. ACS Applied Materials & Interfaces,2017,9(40):34544-34586. doi: 10.1021/acsami.7b07063
    [46] SU X, CHAN C, SHI J, et al. A graphene quantum dot@Fe3O4@SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells[J]. Biosensors and Bioelectronics,2017,92:489-495. doi: 10.1016/j.bios.2016.10.076
    [47] DUN M, TAN J, TAN W, et al. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: A room-temperature H2S gas sensor with ultra-fast response and recovery[J]. Sensors and Actuators B: Chemical,2019,298:126839. doi: 10.1016/j.snb.2019.126839
    [48] AHMED S R, CIRONE J, CHEN A. Fluorescent Fe3O4 quantum dots for H2O2 detection[J]. ACS Applied Nano Materials,2019,2(4):2076-2085. doi: 10.1021/acsanm.9b00071
    [49] HUANG Q, ZHAO Z, NIE D, et al. Molecularly imprinted poly(thionine)-based electrochemical sensing platform for fast and selective ultratrace determination of patulin[J]. Analytical Chemistry,2019,91(6):4116-4123. doi: 10.1021/acs.analchem.8b05791
    [50] GUI R, JIN H, GUO H, et al. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors[J]. Biosensors and Bioelectronics,2018,100:56-70. doi: 10.1016/j.bios.2017.08.058
    [51] BELBRUNO J J. Molecularly imprinted polymers[J]. Chemical Reviews,2019,119(1):94-119. doi: 10.1021/acs.chemrev.8b00171
    [52] LIU Z, FAN T, ZHANG Y, et al. Electrochemi cal assay of ampicillin using Fe3N-Co2N nanoarray coated with molecularly imprinted polymer[J]. Mikrochim Acta,2020,187(8):442. doi: 10.1007/s00604-020-04432-2
    [53] SUN Y, GAO H, XU L, et al. Ultrasensitive determination of sulfathiazole using a molecularly imprinted electrochemical sensor with CuS microflowers as an electron transfer probe and Au@COF for signal amplification[J]. Food Chemistry,2020,332:127376. doi: 10.1016/j.foodchem.2020.127376
    [54] RAO H, ZHAO X, LIU X, et al. A novel molecularly imprinted electrochemical sensor based on graphene quantum dots coated on hollow nickel nanospheres with high sensitivity and selectivity for the rapid determination of bisphenol S[J]. Biosensors and Bioelectronics,2018,100:341-347. doi: 10.1016/j.bios.2017.09.016
    [55] ENSAFI A A, NASR-ESFAHANI P, REZAEI B. Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots[J]. Sensors and Actuators B: Chemical,2018,270:192-199. doi: 10.1016/j.snb.2018.05.024
    [56] WANG Y, YAO L, LIU X, et al. CuCo2O4/N-doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole[J]. Biosensors and Bioelectronics,2019,142:111483. doi: 10.1016/j.bios.2019.111483
    [57] LIU Y, YANG G, LI T, et al. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection[J]. Chinese Chemical Letters,2021,32(6):1957-1962. doi: 10.1016/j.cclet.2021.01.016
    [58] TANG Y, LIU P, XU J, et al. Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline[J]. Sensors and Actuators B: Chemical,2018,258:906-912. doi: 10.1016/j.snb.2017.11.071
    [59] LV L, ZHANG B, TIAN P, et al. A “signal off” aptasensor based on AuNPs/Ni-MOF substrate-free catalyzed for detection enrofloxacin[J]. Journal of Electroanalytical Chemistry,2022,911:116251. doi: 10.1016/j.jelechem.2022.116251
    [60] SONG J, HUANG M, LIN X, et al. Novel Fe-based metal–organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection[J]. Chemical Engineering Journal,2022,427:130913. doi: 10.1016/j.cej.2021.130913
    [61] MAKSIMCHUK N V, ZALOMAEVA O V, SKOBELEV I Y, et al. Metal-organic frameworks of the MIL-101 family as heterogeneous single-site catalysts[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2012,468(2143):2017-2034. doi: 10.1098/rspa.2012.0072
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  688
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-03-24
  • 录用日期:  2022-04-03
  • 网络出版日期:  2022-04-14
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回