留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Micro-CT图像的缎纹织物细观结构分析及渗透率预测

曹鹏军 赵文斌 杨斌 倪爱清 王继辉

曹鹏军, 赵文斌, 杨斌, 等. 基于Micro-CT图像的缎纹织物细观结构分析及渗透率预测[J]. 复合材料学报, 2023, 40(3): 1751-1763. doi: 10.13801/j.cnki.fhclxb.20220420.002
引用本文: 曹鹏军, 赵文斌, 杨斌, 等. 基于Micro-CT图像的缎纹织物细观结构分析及渗透率预测[J]. 复合材料学报, 2023, 40(3): 1751-1763. doi: 10.13801/j.cnki.fhclxb.20220420.002
CAO Pengjun, ZHAO Wenbin, YANG Bin, et al. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1751-1763. doi: 10.13801/j.cnki.fhclxb.20220420.002
Citation: CAO Pengjun, ZHAO Wenbin, YANG Bin, et al. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1751-1763. doi: 10.13801/j.cnki.fhclxb.20220420.002

基于Micro-CT图像的缎纹织物细观结构分析及渗透率预测

doi: 10.13801/j.cnki.fhclxb.20220420.002
基金项目: 科工局基础科研项目(JCKY2018207B204)
详细信息
    通讯作者:

    倪爱清,博士,副研究员,硕士生导师,研究方向为树脂基复合材料性能及模拟仿真 E-mail: ani@whut.edu.cn

  • 中图分类号: TB332

Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT

Funds: Defense Industrial Technology Development Program (JCKY2018207B204)
  • 摘要: 建立了确定显微计算机断层扫描技术(Micro-CT)扫描最合适分辨率的方法,并基于CT图像分析了3K五枚缎纹织物的结构,预测了渗透率。首先,将织物理想单胞模型转换为不同分辨率二维切片,考察分辨率对单胞结构、渗透率表征的影响,提出了确定Micro-CT扫描最合适分辨率的方法;其次,采用确定的分辨率对织物进行Micro-CT扫描,获取织物细观结构;最后,使用CT三维细观结构进行厚度方向渗透率数值预测,研究了织物结构的空间离散性对厚度方向渗透率的影响。结果表明:对于本文所用五枚缎纹织物,采用15 μm分辨率进行Micro-CT扫描最合适;通过Micro-CT可准确获取织物纤维束的路径及截面变化;多层织物的孔隙沿3个主方向均呈现周期性排布,且束间孔隙率均值为16.6%;使用真实CT模型的厚度方向渗透率预测结果与实验值具有良好的吻合性。

     

  • 图  1  纤维束截面特征参数

    Figure  1.  Characteristic parameters of fiber tows

    图  2  厚度方向渗透率测试装置

    Figure  2.  Through-thickness permeability testing device

    图  3  五枚缎纹织物结构形貌

    Figure  3.  Structural morphology of the 5-harness satin woven fabric

    图  4  五枚缎纹织物单胞模型:(a) 理想单胞几何模型;(b) 单胞体素模型

    Figure  4.  Unit-cell model of 5-harness satin woven fabric: (a) Geometry model of fabric unit-cell; (b) Voxel model of fabric unit-cell

    图  5  不同分辨率下五枚缎纹织物经纬纱线交错处的XY平面切片

    Figure  5.  2D slices parallel to XY plane at the intersection of warp and weft yarns of 5-harness satin woven fabric at different resolutions

    图  6  不同分辨率下与XZ平面平行的五枚缎纹织物模型截面切片图

    Figure  6.  2D slices of 5-harness satin woven fabric model parallel to XZ plane at different resolutions

    图  7  不同分辨率下五枚缎纹织物模型的束间孔隙率

    Figure  7.  Inter-tow porosity of 5-harness satin woven fabric model at different resolutions

    图  8  五枚缎纹织物试样及Micro-CT实验系统

    Figure  8.  5-harness satin woven fabric sample and Micro-CT experimental system

    图  9  五枚缎纹织物CT图像中的最小单胞选取

    Figure  9.  Minimum unit-cell selection from CT images of 5-harness satin woven fabric

    图  10  纤维束的提取

    Figure  10.  Extraction of fiber tows

    图  11  基于CT图像的厚度方向渗透率预测

    Figure  11.  Experimental simulation of through-thickness permeability based on CT image

    图  12  五枚缎纹织物束间孔隙不同位置二维切片图

    Figure  12.  2D slices of the inter-tow voids at different positions of 5-harness satin woven fabric

    图  13  沿不同切片方向变化的五枚缎纹织物单胞束间孔隙率

    Figure  13.  Inter-tow porosity of the 5-harness satin woven fabric unit-cells varying along different slice directions

    图  14  五枚缎纹织物经向纤维束结构特征:(a) 面内波动参数变化;(b) 面外波动参数变化;(c) 面积变化;(d) 长宽比变化

    Figure  14.  Structural characteristics of warp yarns of 5-harness satin woven fabric: (a) Variation of in-plane fluctuation parameter; (b) Variation of out-of-plane fluctuation parameter; (c) Changes in area; (d) Changes in aspect ratio

    图  15  基于五枚缎纹织物单胞CT图像的Z向流动仿真结果云图

    Figure  15.  Cloud images of Z-direction flow simulation results based on CT images of the 5-harness satin woven fabric unit-cell

    图  16  基于五枚缎纹织物单胞CT图像仿真所得的KZ

    Figure  16.  Simulated values of KZ based on CT image of the 5-harness satin woven fabric unit-cells

    表  1  五枚缎纹织物细观几何参数

    Table  1.   Geometry parameters of the 5-harness satin woven fabric

    ParameterAverage/μmCoefficient of variation/%
    WeftWidth1157±412.8
    Height164±135.5
    WarpWidth1520±311.0
    Height144±93.7
    Fiber diameter7.0±1.47.3
    下载: 导出CSV

    表  2  不同分辨率下五枚缎纹织物厚度方向渗透率计算结果

    Table  2.   Through-thickness permeability of 5-harness satin woven fabric calculated at different resolutions

    Resolution/μm4540353025201510
    Number of voxels4360206336509352201464870253900850692001101028539603600
    KZ/10−12 m22.161.482.361.641.711.741.711.73
    CPU time/min<10<10<101214264775
    Notes: KZ—Permeability of 5-harness satin woven fabric in thickness direction; CPU—Central processing unit.
    下载: 导出CSV

    表  3  实验测得的五枚缎纹织物KZ

    Table  3.   KZ values measured by experiment of 5-harness satin woven fabric

    NumberPermeability/10−12 m2
    11.35
    21.32
    31.28
    41.17
    51.13
    Average/10−12 m21.25
    Coefficient of variation/%7.65
    下载: 导出CSV
  • [1] KONSTANTOPOULOS S, HUEBER C, ANTONIADIS I, et al. Liquid composite molding reproducibility in real-world production of fiber reinforced polymeric composites: A review of challenges and solutions[J]. Advanced Manufacturing: Polymer & Composites Science,2019,5(3):85-99.
    [2] 杨旭静, 王跃飞, 韦凯, 等. 基于孔隙控制的车身结构树脂传递模塑成型工艺设计[J]. 复合材料学报, 2017, 34(5):970-977.

    YANG Xujing, WANG Yuefei, WEI Kai, et al. Design of resin transfer molding process for vehicle body structure based on porosity control[J]. Acta Materiae Compositae Sinica,2017,34(5):970-977(in Chinese).
    [3] 马彦旭, 王继辉, 倪爱清, 等. 大厚度复合材料曲面典型构件的工艺优化[J]. 复合材料学报, 2021, 38(10):3302-3313.

    MA Yanxu, WANG Jihui, NI Aiqing, et al. Process optimization of typical composite cambered components with large thickness[J]. Acta Materiae Compositae Sinica,2021,38(10):3302-3313(in Chinese).
    [4] 李嘉禄, 吴晓青, 冯驰. RTM中纤维渗透率预测的研究进展[J]. 复合材料学报, 2006, 23(6):1-8. doi: 10.3321/j.issn:1000-3851.2006.06.001

    LI Jialu, WU Xiaoqing, FENG Chi. Research progress on the permeability prediction of f iber in RTM[J]. Acta Materiae Compositae Sinica,2006,23(6):1-8(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.06.001
    [5] 詹明樊, 王继辉, 倪爱清, 等. 基于数字图像技术的纤维织物面内渗透率表征[J]. 复合材料学报, 2021, 38(12):4180-4189.

    ZHAN Mingfan, WANG Jihui, NI Aiqing, et al. In-plane permeability characterization of fiber fabric based on digital image technology[J]. Acta Materiae Compositae Sinica,2021,38(12):4180-4189(in Chinese).
    [6] 李香林, 王继辉, 倪爱清, 等. 液体模塑成型工艺用纤维织物厚度方向饱和渗透率的预测模型[J]. 复合材料学报, 2019, 36(6):1428-1437.

    LI Xianglin, WANG Jihui, NI Aiqing, et al. Prediction model of through-thickness saturated permeability of fabric for liquid composite molding[J]. Acta Materiae Compositae Sinica,2019,36(6):1428-1437(in Chinese).
    [7] HUANG W, CAUSSE P, HU H, et al. Numerical and experimental investigation of saturated transverse permeability of 2D woven glass fabrics based on material twins[J]. Polymer Composites,2020,41(4):1341-1355. doi: 10.1002/pc.25458
    [8] 张浩, 李书欣, 王继辉, 等. 基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响[J]. 复合材料学报, 2020, 37(5):1175-1183.

    ZHANG Hao, LI Shuxin, WANG Jihui, et al. Influence of ratio of hole area for mesh plate layer on through-thickness permeability based on a new designed test bench[J]. Acta Materiae Compositae Sinica,2020,37(5):1175-1183(in Chinese).
    [9] VERNET N, RUIZ E, ADVANI S, et al. Experimental determination of the permeability of engineering textiles: Benchmark II[J]. Composites Part A: Applied Science and Manufacturing,2014,61:172-184. doi: 10.1016/j.compositesa.2014.02.010
    [10] YONG A, AKTAS A, MAY D, et al. Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise[J]. Composites Part A: Applied Science and Manufacturing,2021,148(1):106480.
    [11] YANG B, HUANG W, CAUSSE P, et al. On the design of test molds based on unidirectional saturated flows to measure transverse permeability in liquid composite molding[J]. Polymer Composites,2022,43(4):2234-2251. doi: 10.1002/pc.26536
    [12] 李永静, 晏石林, 李德权, 等. 液体模塑成型工艺中纤维束横向渗透率的细观数值模拟[J]. 纺织学报, 2015, 36(8):22-27.

    LI Yongjing, YAN Shilin, LI Dequan, et al. Microscopic numerical simulation of transverse permeability of fiber bundles in liquid composite molding[J]. Journal of Textile Research,2015,36(8):22-27(in Chinese).
    [13] 倪爱清, 王继辉, 朱以文. 复合材料液体模塑成型工艺中预成型体渗透率张量的数值预测[J]. 复合材料学报, 2007, 24(6):50-56. doi: 10.3321/j.issn:1000-3851.2007.06.009

    NI Aiqing, WANG Jihui, ZHU Yiwen. Numerical prediction of saturated permeability tensor of a woven fabric for use in the fluid simulation of liquid composite molding[J]. Acta Materiae Compositae Sinica,2007,24(6):50-56(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.06.009
    [14] CHEN Z R, YE L, LU M. Permeability predictions for woven fabric preforms[J]. Journal of Composite Materials,2010,44(13):1569-1586. doi: 10.1177/0021998309355888
    [15] ZENG X, ENDRUWEIT A, BROWN L P, et al. Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture-induced deformation[J]. Composites Part A: Applied Science and Manufacturing,2015,77:266-274. doi: 10.1016/j.compositesa.2015.03.027
    [16] 金天国, 魏雅君, 杨波, 等. 预成型体渗透率预测及其受压缩变形的影响[J]. 复合材料学报, 2015, 32(3):840-847.

    JIN Tianguo, WEI Yajun, YANG Bo, et al. Permeability prediction of preform and influence of compression deformation[J]. Acta Materiae Compositae Sinica,2015,32(3):840-847(in Chinese).
    [17] 张璇, 白国娟, 王星星, 等. 三维织物厚度方向渗透率研究[J]. 中国胶粘剂, 2017, 26(5):21-24.

    ZHANG Xuan, BAI Guojuan, WANG Xingxing, et al. Study on the thickness-permeability of three-dimensional fabric[J]. China Adhesives,2017,26(5):21-24(in Chinese).
    [18] YOUSAF Z, POTLURI P, WITHERS P J, et al. Digital element simulation of aligned tows during compaction validated by computed tomography (CT)[J]. International Journal of Solids and Structures,2018,154:78-87. doi: 10.1016/j.ijsolstr.2017.05.044
    [19] ALI M A, UMER R, KHAN K A, et al. In-plane virtual permeability characterization of 3 D woven fabrics using a hybrid experimental and numerical approach[J]. Composites Science and Technology,2019,173:99-109. doi: 10.1016/j.compscitech.2019.01.030
    [20] STRAUMIT I, HAHN C, WINTERSTEIN E, et al. Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images[J]. Composites Part A: Applied Science and Manufacturing,2016,81:289-295. doi: 10.1016/j.compositesa.2015.11.025
    [21] 王法琪 严亚波, 温鑫鑫, 等. Micro-CT分辨率对松质骨微观结构及生物力学测量的影响[J]. 现代生物医学进展, 2015, 15(10):1877-1880,1835.

    WANG Faqi, YAN Yabo, WEN Xinxin, et al. The effect of micro-CT resolution on measuring microstructure and mechanical parameters of human lumbar vertebral trabecular bone[J]. Progress in Modern Biomedicine,2015,15(10):1877-1880,1835(in Chinese).
    [22] 耿冲, 杨永飞, 高莹. 不同分辨率岩石CT图像的优化处理方法[J]. 科学技术与工程, 2014, 14(2):1-4. doi: 10.3969/j.issn.1671-1815.2014.02.001

    GENG Chong, YANG Yongfei, GAO Ying. Optimization of image processing method based on rock CT images of different resolutions[J]. Science Technology and Engineering,2014,14(2):1-4(in Chinese). doi: 10.3969/j.issn.1671-1815.2014.02.001
    [23] ALI M A, UMER R, KHAN K A. A virtual permeability measurement framework for fiber reinforcements using micro CT generated digital twins[J]. International Journal of Lightweight Materials and Manufacture,2020,3(3):204-216. doi: 10.1016/j.ijlmm.2019.12.002
    [24] 王晨晨, 姚军, 杨永飞, 等. 基于CT扫描法构建数字岩心的分辨率选取研究[J]. 科学技术与工程, 2013, 13(4):1050-1052.

    WANG Chenchen, YAO Jun, YANG Yongfei, et al. Study of resolution selection for construction of digtal rock with CT scanning method[J]. Science Technology and Engineering,2013,13(4):1050-1052(in Chinese).
    [25] RATHORE J S, VIENNE C, QUINSAT Y, et al. Influence of resolution on the X-ray CT-based measurements of metallic AM lattice structures[J]. Welding in the World,2020,64(8):1367-1376. doi: 10.1007/s40194-020-00920-4
    [26] BIGGEMANN J, KLLNER D, SCHATZ J, et al. Influence of CT scanning resolution and volume on FEM-simulation of periodic 3D-printed porous ceramics[J]. Materials Letters,2021,303:130529.
    [27] 杨斌. 复合材料用纤维织物压缩与渗流性能表征方法研究[D]. 武汉: 武汉理工大学, 2018.

    YANG Bin. Research on compressibility and seepage property characterization methods of preform for FRP[D]. Wuhan: Wuhan University of Technology, 2018(in Chinese).
    [28] ZENG X, BROWN L P, ENDRUWEIT A, et al. Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[J]. Composites Part A: Applied Science and Manufacturing,2014,56(1):150-160.
    [29] 王浩. 平纹织物复合材料微观结构特征对材料弹性常数的影响研究[D]. 长沙: 国防科学技术大学, 2016.

    WANG Hao. Effects of microstructure characteristics on elastic properties of plain-weave composites[D]. Changsha: National University of Defense Technology, 2016(in Chinese).
    [30] RAJAB M A, GEORGE L E. Stamps extraction using local adaptive k-means and ISODATA algorithms[J]. Indonesian Journal of Electrical Engineering and Computer Science,2021,21(1):137-145. doi: 10.11591/ijeecs.v21.i1.pp137-145
    [31] TAHIR M W, HALLSTR M S, KERMO M. Effect of dual scale porosity on the overall permeability of fibrous structures[J]. Composites Science & Technology,2014,103:56-62.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  954
  • HTML全文浏览量:  374
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-03-27
  • 录用日期:  2022-04-09
  • 网络出版日期:  2022-04-21
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回