留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷基复合材料涡轮叶盘设计、制备与考核验证

刘小冲 徐友良 李坚 罗潇 郭小军 胡晓安 曹学强 李龙彪 刘持栋 董宁 刘永胜

刘小冲, 徐友良, 李坚, 等. 陶瓷基复合材料涡轮叶盘设计、制备与考核验证[J]. 复合材料学报, 2023, 40(3): 1696-1706. doi: 10.13801/j.cnki.fhclxb.20220407.001
引用本文: 刘小冲, 徐友良, 李坚, 等. 陶瓷基复合材料涡轮叶盘设计、制备与考核验证[J]. 复合材料学报, 2023, 40(3): 1696-1706. doi: 10.13801/j.cnki.fhclxb.20220407.001
LIU Xiaochong, XU Youliang, LI Jian, et al. Design, fabrication and testing of ceramic-matrix composite turbine blisk[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1696-1706. doi: 10.13801/j.cnki.fhclxb.20220407.001
Citation: LIU Xiaochong, XU Youliang, LI Jian, et al. Design, fabrication and testing of ceramic-matrix composite turbine blisk[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1696-1706. doi: 10.13801/j.cnki.fhclxb.20220407.001

陶瓷基复合材料涡轮叶盘设计、制备与考核验证

doi: 10.13801/j.cnki.fhclxb.20220407.001
基金项目: 国家自然科学基金重大研究计划重点支持项目(92060202);国家自然科学基金(52172100)
详细信息
    通讯作者:

    徐友良,博士,研究员,研究方向为发动机结构与强度 E-mail:youliang_xu@163.com

  • 中图分类号: TB332

Design, fabrication and testing of ceramic-matrix composite turbine blisk

Funds: Project Supported by the Major Research Plan of the National Natural Science Foundation of China (92060202); National Natural Science Foundation of China (52172100)
  • 摘要: 涡轮转子是燃气涡轮发动机的核心部件。针对SiC/SiC涡轮叶盘设计、制备与考核验证开展研究,采用蛛网仿形(SWS)SiC纤维预制体作为涡轮叶盘的增强体,预制体表面分别沉积BN界面相与SiC基体,通“在线加工”方式对SiC/SiC涡轮叶盘分别进行粗加工和精加工,采用大气等离子喷涂方法制备环境障碍涂层,形成满足设计要求的涡轮叶盘。采用CT对SiC/SiC涡轮叶盘进行无损检测,表征叶盘内部缺陷分布。针对制备的SiC/SiC涡轮叶盘开展性能评价、超转试验、台架试验等考核验证,研究表明:SiC/SiC涡轮叶盘最大破坏强度达到300 MPa;在室温超转试验中,当转速达到n=104166 r/min时,叶片发生断裂,当转速达到n=108072 r/min时,轮体发生破裂;在发动机台架试验中,累积完成了N=994次最高转速nmax=60000 r/min的循环载荷及N=100次最高转速nmax=70000 r/min的循环载荷试车考核。2022年1月1日,SiC/SiC涡轮叶盘在株洲成功完成了首次飞行试验验证,这也是国内陶瓷基复合材料转子首次配装平台的空中飞行试验,验证了SiC/SiC涡轮转子在航空发动机上应用的可行性。

     

  • 图  1  SiC/SiC涡轮叶盘SiC纤维预制体设计方案

    Figure  1.  Design of SiC fiber preform in SiC/SiC turbine blisk

    图  2  蛛网仿生结构SiC/SiC涡轮叶盘预制体定型

    Figure  2.  Spider web structure fiber perform of SiC/SiC turbine blisk

    图  3  SiC纤维表面BN界面相检测取样及厚度测试

    Figure  3.  Sampling and thickness measurement of BN interphase on SiC fiber surface

    图  4  SiC纤维预制体SiC基体致密化:(a) 预制体SiC沉积;(b) 高温模具脱除后的SiC预制体

    Figure  4.  SiC matrix densification on the SiC fiber preform: (a) Deposition of SiC matrix; (b) SiC preform after removing mold

    图  5  SiC基体沉积纯度检验结果

    Figure  5.  Purity test result of the SiC matrix

    图  6  SiC/SiC涡轮叶盘在线加工成型过程

    Figure  6.  On-line machining process of SiC/SiC turbine blisk

    图  7  环境障碍涂层(EBCs)截面形貌SEM图像

    Figure  7.  Cross-section SEM image of environmental barrier coatings (EBCs)

    R—La, Nd, Sm, Gd, Yb; CMC—Ceramic-matrix composite

    图  8  EBCs-SiC/SiC经过1350℃空气气氛保温300 h的三点弯曲载荷-位移曲线

    Figure  8.  Three-point bending load-displacement curve of EBCs-SiC/SiC after holding at 1350℃ in air atmosphere for 300 h

    图  9  EBCs-SiC/SiC三点弯曲后断口形貌 (a) 和截面形貌 (b)

    Figure  9.  Fracture surface (a) and cross-section surface (b) of EBCs-SiC/SiC after three-point flexure testing

    图  10  EBCs-SiC/SiC表面烧蚀温度曲线 (a) 和表面烧蚀2000次后的外观形貌 (b)

    Figure  10.  Surface ablation temperature curve (a) and morphology after 2000 times of surface ablation (b) of EBCs-SiC/SiC

    图  11  SiC/SiC涡轮叶盘CT检测图

    Figure  11.  CT detection of SiC/SiC turbine blisk

    图  12  SiC/SiC涡轮叶盘CT数据3D重构分析

    Figure  12.  3D reconstruction analysis of SiC/SiC turbine disk CT data

    图  13  SiC/SiC在1400oC真空环境下的拉伸应力-应变曲线

    Figure  13.  Tensile stress-strain curve of SiC/SiC composite at 1400oC in vacuum atmosphere

    图  14  SiC/SiC涡轮叶盘性能评价方法:(a) 随炉圆环试样;(b) 缺口圆环试样;(c) 拉伸断裂测试;(d) 断裂试样;(e) 有限元仿真缺口圆环试样断裂;(f) 涡轮叶盘应力分布

    Figure  14.  Evaluation of SiC/SiC turbine blisk performance: (a) Circular specimen; (b) Notched circular specimen; (c) Tensile fracture test; (d) Fracture specimen; (e) Finite element simulation of notched circular specimen fracture; (f) Turbine blisk stress distribution

    图  15  SiC/SiC涡轮叶盘超转实验:(a)旋转试验台;(b) CT检测系统;(c) 涡轮叶盘试验件;(d) 激光测频系统

    Figure  15.  SiC/SiC turbine blisk over rotation experiment: (a) Rotation test equipment; (b) CT detection system; (c) Turbine blisk; (d) Laser frequency measurement system

    图  16  SiC/SiC涡轮叶盘室温超转试验结果:(a) 叶片飞断;(b) 超转破坏后的残骸;(c) 碎块体视镜照片;(d) 碎块体扫SEM图像

    Figure  16.  Results of over rotation test of SiC/SiC turbine blisk at room temperature: (a) Blade flying off; (b) Fragments after over rotation damage; (c) Fragment stereoscopic photo; (d) Fragment SEM image

    图  17  (a) 发动机试车台;(b) 安装在发动机内的SiC/SiC涡轮叶盘;(c) SiC/SiC原始涡轮叶盘;(d) EBCs-SiC/SiC涡轮叶盘;(e) N=994次n=60000 r/min试验后的轮盘表面状态;(f) 表面氧化形貌;((g)~(h)) 轮盘表面氧化产物形貌;(i) 叶片掉块;(j) CT切片;(k) CT切片

    Figure  17.  (a) Engine test bench; (b) SiC/SiC turbine blisk assembled in the test engine; (c) Original SiC/SiC turbine blisk; (d) EBCs-SiC/SiC turbine blisk; (e) EBC-SiC/SiC turbine blisk after N=994 tests at n=60000 r/min; (f) Surface morphology of SiC/SiC turbine blisk after test; ((g)-(h)) Surface morphology of oxidation products ; (i) Damage in the blade; (j) CT section; (k) CT section

    图  18  (a) SiC/SiC涡轮叶盘转速曲线;(b) SiC/SiC涡轮叶盘排气温度和油耗曲线

    Figure  18.  (a) Rotation curves of SiC/SiC turbine blisk; (b) Exhaust temperature and fuel consumption curves of SiC/SiC turbine blisk

    图  19  SiC/SiC涡轮叶盘飞行考核试验

    Figure  19.  Flight testing of SiC/SiC turbine blisk

    表  1  叶片频率衰退范围统计表

    Table  1.   Statistical of blade frequency degradation range

    Degradation rangeNumber of blades
    0.0%-0.5% 0
    0.5%-1.0% 0
    1.0%-1.5% 4
    1.5%-2.0%13
    2.0%-2.5% 2
    2.5%-3.0% 2
    3.0%-3.5% 2
    3.5%-4.0% 0
    4.0%-4.5% 0
    4.5%-5.0% 1
    下载: 导出CSV
  • [1] 江和甫. 对涡轮盘材料的需求及展望[J]. 燃气涡轮试验与研究, 2002, 15(4):1-6. doi: 10.3969/j.issn.1672-2620.2002.04.001

    JIANG Hefu. Requirements and forecast of turbine disk materials[J]. Gas Turbine Experiment and Research,2002,15(4):1-6(in Chinese). doi: 10.3969/j.issn.1672-2620.2002.04.001
    [2] 叶勇松, 黄璇璇, 郭双全, 等. 航空发动机碳化硅基复合材料环境性能评价研究进展[J]. 航空维修与工程, 2016(8):32-35. doi: 10.3969/j.issn.1672-0989.2016.11.007

    YE Yongsong, HUAGN Xuanxuan, GUO Shuangquan, et al. Progress of environmental property of ceramic matrix composite-SiC for aero-engine[J]. Aciation Maintenance & Engineering,2016(8):32-35(in Chinese). doi: 10.3969/j.issn.1672-0989.2016.11.007
    [3] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.

    LIU Qiaomu, HUANG Shunzhou, HE Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47(2): 1-10(in Chinese).
    [4] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [5] LI L B. Durability of ceramic matrix composites[M]. Oxford: Elsevier, 2020.
    [6] 朱思雨, 张巧君, 洪智亮, 等. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制[J]. 复合材料学报, 2023, 40(1): 464-471.

    ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 464-471(in Chinese).
    [7] LI L B. Time-dependent mechanical behavior of ceramic-matrix composites at elevated temperatures[M]. Singapore: Springer Nature, 2020.
    [8] 胡晓安, 张宇, 阳海棠, 等. 三维编织SiC/SiC复合材料拉伸和弯曲损伤机制[J]. 复合材料学报, 2019, 36(8):1879-1885.

    HU Xiaoan, ZHANG Yu, YANG Haitang, et al. Tensile and bending damage mechanism of 3D braided SiC/SiC composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1879-1885(in Chinese).
    [9] LI L B. High temperature mechanical behavior of ceramic-matrix composites[M]. Weinheim: Wiley-VCH, 2021.
    [10] 罗潇, 徐友良, 郭小军, 等. 涡轮发动机用陶瓷基复合材料涡轮转子研究进展[J]. 推进技术, 2021, 42(1):230-240.

    LUO Xiao, XU Youliang, GUO Xiaojun, et al. Research progress of ceramic matrix composites turbine rotors for turbine engines[J]. Journal of Propulsion Technology,2021,42(1):230-240(in Chinese).
    [11] 罗潇, 李坚, 李敏, 等. 蛛网式骨架增强陶瓷基复合材料涡轮叶盘设计及验证[J]. 航空动力, 2021(1): 54-56.

    LUO Xiao, LI Jian, LI Min, et al. Design and test of the CMC blisk reinforced by spider-web-like framework[J]. Aerospace Power, 2021(1): 54-56.
    [12] TENG X F, LYU S Q, HU X A, et al. Effect of off-axis angle on mesoscale deformation and failure behavior of plain-woven C/SiC composites with digital image correlation[J]. Journal of the European Ceramic Society, 2022, 42: 4712-4722.
    [13] WANG F, TENG X F, HU X A, et al. Damage and failure analysis of a SiCf/SiC ceramic matrix composite using digital image correlation and acoustic emission[J]. Ceramics International, 2022, 48: 4699-4709.
    [14] LI L B. Interfaces of ceramic-matrix composites: Design, characterization and damage effects[M]. Weinheim: Wiley-VCH, 2020.
    [15] 刘海韬, 程海峰, 王军, 等. SiC/SiC复合材料界面相研究进展[J]. 材料导报, 2010, 24:10-14.

    LIU Haitao, CHENG Haifeng, WANG Jun, et al. Study on the interphase of the continuous SiC fiber reinforced SiC composites[J]. Materials Review,2010,24:10-14(in Chinese).
    [16] NASLAIN R R. The design of the fiber-matrix interfacial zone in ceramic matrix composites[J]. Composites Part A: Applied Science & Manufacturing,1998,29:1145-1155. doi: 10.1016/S1359-835X(97)00128-0
    [17] 张冰玉, 王岭, 焦健, 等. 界面层对SiC/SiC复合材料力学性能及氧化行为的影响[J]. 航空制造技术, 2017, 60(12): 78-83.

    ZHANG Bingyu, WANG Ling, JIAO Jian, et al. Effect of interface on mechanical property and oxidation behavior of SiC/SiC composites[J]. Aeronautical Manufacturing Technology, 2017, 60(12): 78-83(in Chinese).
    [18] 王章文, 张军, 方国东, 等. 界面层对纤维增韧陶瓷基复合材料力学性能影响的研究进展[J]. 装备环境工程, 2020, 17(1):77-89.

    WANG Zhangwen, ZHANG Jun, FANG Guodong, et al. Effect of interfacial layer on mechanical properties of fiber toughened ceramic matrix composites[J]. Equipment Environmental Engineering,2020,17(1):77-89(in Chinese).
    [19] 贾林涛, 王梦千, 徐海明, 等. SiC纤维表面(BN-SiC)n复合涂层的制备及单丝拉伸性能[J]. 复合材料学报, 2019, 36(8):1873-1878.

    JIA Lintao, WANG Mengqian, XU Haiming, et al. Preparation of (BN-SiC)n composite coatings on SiC fibers and tensile properties of monofilament[J]. Acta Materiae Compositae Sinica,2019,36(8):1873-1878(in Chinese).
    [20] LI L B. Matrix cracking of ceramic-matrix compo-sites[M]. Singapore: Springer Nature, 2022.
    [21] AN Q L, CHEN J, MING W W, et al. Machining of SiC ceramic matrix composites: A review[J]. Chinese Jour-nal of Aeronautics, 2021, 34(4): 540-567.
    [22] LI W N, ZHANG R H, LIU Y S, et al. Effect of different parameters on machining of SiC/SiC composites via pico-second laser[J]. Applied Surface Science,2016,364(28):378-387.
    [23] LI L B. Time-dependent deformation and fracture behavior of fiber-reinforced ceramic-matrix composites under stress-rupture loading at intermediate temperature[J]. Journal of Aerospace Engineering, 2021, 34(2): 04020111.
    [24] LI L B. A time-dependent tensile constitutive model for long-fiber-reinforced unidirectional ceramic-matrix minicomposites considering interface and fiber oxidation[J]. International Journal of Damage Mechanics,2020,29(7):1138-1166. doi: 10.1177/1056789520924103
    [25] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程, 2018, 46(10):1-8. doi: 10.11868/j.issn.1001-4381.2018.000230

    LIU Qiaomu, HUANG Shunzhou, HE Aijie. Research progress in environmental barrier coatings of SiC ceramic matrix composites[J]. Journal of Materials Engineering,2018,46(10):1-8(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000230
    [26] NASIRI N A, PATRA N, PEZOLDT M, et al. Investigation of a single-layer EBC deposited on SiC/SiC CMCs: Processing and corrosion behavior in high-temperature steam[J]. Journal of the European Ceramic Society,2019,39(8):2703-2711. doi: 10.1016/j.jeurceramsoc.2018.12.019
    [27] WANG F, TENG X F, HU X A, et al. Damage and failure analysis of a SiCf/SiC ceramic matrix composite using digital image correlation and acoustic emission[J]. Ceramics International,2022,48(4):4699-4709. doi: 10.1016/j.ceramint.2021.11.006
    [28] GUO X J, WU J W, LI J, et al. Damage monitoring of 2D SiC/SiC composites under monotonic and cyclic loading/unloading using acoustic emission and natural frequency[J]. Ceramics-Silikaty,2021,65(2):125-131.
    [29] LIU X C, GUO X J, XU Y L, et al. Cyclic thermal shock damage behavior in CVI SiC/SiC high-pressure turbine twin guide vanes[J]. Materials,2021,14(20):6104. doi: 10.3390/ma14206104
    [30] MORSCHER G N, SINGH M, KISER J D, et al. Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites[J]. Composites Science and Technology,2007,67(6):1009-1017. doi: 10.1016/j.compscitech.2006.06.007
    [31] GOWAYED Y, OJARD G, SANTHOSH U, et al. Modeling of crack density in ceramic matrix composites[J]. Journal of Composite Materials,2015,49(18):2285-2294. doi: 10.1177/0021998314545188
    [32] LI L B. Modeling matrix fracture in fiber-reinforced ceramic-matrix composites with different fiber preforms[J]. Textile Research Journal,2020,90(7-8):909-924. doi: 10.1177/0040517519883956
    [33] LI L B. Nonlinear behavior of ceramic-matrix composites[M]. Oxford: Elsevier, 2021.
    [34] LI L B. Synergistic effects of fiber debonding and fracture on matrix cracking in fiber-reinforced ceramic-matrix composites[J]. Materials Science and Engineering A,2017,682:482-490. doi: 10.1016/j.msea.2016.11.077
    [35] LI L B. Modeling for monotonic and cyclic tensile stress-strain behavior of 2D and 2.5D woven C/SiC ceramic-matrix composites[J]. Mechanics of Composite Materials,2018,54(2):165-178. doi: 10.1007/s11029-018-9729-5
    [36] LI L B. Micromechanical modeling for tensile behavior of carbon fiber-reinforced ceramic-matrix composites[J]. Applied Composite Materials,2015,22:773-790. doi: 10.1007/s10443-014-9435-y
    [37] SANTHOSH U, AHMAD J, JOHN R, et al. Modeling of stress concentration in ceramic matrix composites[J]. Compo-sites Part B: Engineering,2013,45(1):1156-1163. doi: 10.1016/j.compositesb.2012.07.034
    [38] LI L B. A time-dependent vibration damping model of fiber-reinforced ceramic-matrix composites at elevated temperature[J]. Ceramics International,2020,46(17):27031-27045. doi: 10.1016/j.ceramint.2020.07.180
    [39] 单晓明, 黄金泉, 周文祥, 等, 涡轴发动机性能在线监测技术研究及试验验证[J]. 航空动力学报, 2013, 28(4): 721-729.

    SHAN Xiaoming, HUANG Jinquan, ZHOU Wenxiang, et al. Study and test validation of turboshaft engine online performance monitoring technology[J]. Journal of Aerospace Power, 2013, 28(4): 721-729(in Chinese).
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  1573
  • HTML全文浏览量:  1308
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-03-25
  • 录用日期:  2022-03-31
  • 网络出版日期:  2022-04-08
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回