留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能

张爽 王子鸣 卢雅宁 唐梦 王英财 柳玉辉

张爽, 王子鸣, 卢雅宁, 等. 熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能[J]. 复合材料学报, 2022, 39(8): 3882-3890. doi: 10.13801/j.cnki.fhclxb.20210923.002
引用本文: 张爽, 王子鸣, 卢雅宁, 等. 熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能[J]. 复合材料学报, 2022, 39(8): 3882-3890. doi: 10.13801/j.cnki.fhclxb.20210923.002
ZHANG Shuang, WANG Ziming, LU Yaning, et al. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3882-3890. doi: 10.13801/j.cnki.fhclxb.20210923.002
Citation: ZHANG Shuang, WANG Ziming, LU Yaning, et al. Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3882-3890. doi: 10.13801/j.cnki.fhclxb.20210923.002

熔盐电解法制备NbS2@MoS2复合材料及其电催化析氢性能

doi: 10.13801/j.cnki.fhclxb.20210923.002
基金项目: 国家自然科学基金-青年科学基金(22006013;21906019);核资源与环境国家重点实验室(K20210001)
详细信息
    通讯作者:

    柳玉辉,博士,讲师,研究方向为电化学 E-mail:liuyuhui@ecut.edu.cn

  • 中图分类号: O645.4;TQ116.2;O643.36

Molten salt electrolysis synthesis of NbS2@MoS2 and its performance for water splitting into hydrogen

  • 摘要: 电解水制氢(HER)相比于传统的制氢方式具有更广阔的研究前景,但由于其动力学过程缓慢,因此价格低廉且高效的电催化剂在HER中尤为重要。通过一步熔盐电解法制备了具有纳米花和纳米片形貌的NbS2@MoS2。采用XRD、SEM、HRTEM、XPS、SAED等手段表征催化剂的物理化学特性。结果表明,NbS2@MoS2纳米花催化剂表现出薄膜花状结构的多晶态,Nb元素均匀分布在MoS2表面。通过电化学测试来验证其HER性能,测试结果表明纳米花结构在HER中表现出优异的电催化性能,在1 mol/L KOH溶液中,电流密度10.0 mA·cm−2下其过电位为292.9 mV,塔菲尔斜率为107.0 mV·dec−1,电荷传递阻抗为31.0 Ω,电化学活性表面积为13.7 mF·cm−2。并且经过20 h催化后仍能保持较好的电催化活性。Nb沉积在MoS2表面形成缺陷,同时在表面形成NbS2,提供了更多的活性位点,从而进一步增强了水分解性能。高温熔盐电结晶为催化材料的合成提供了一种新方法。

     

  • 图  1  NbS2@MoS2和工作电极的合成示意图

    Figure  1.  Synthesis of NbS2@MoS2 and working electrode

    图  2  873.0 K时LiCl-KCl-Nb3Cl8体系下Mo电极上循环伏安(CV)曲线 (a) 和方波伏安(SWV)曲线 (b)

    Figure  2.  Cyclic voltammetry (CV) curves (a) and square wave voltammetry (SWV) curve (b) on Mo electrode at 873.0 K in the LiCl-KCl-Nb3Cl8 system

    D′—Li oxidation peak; D—Li reduction peak; A′, B′, C′—Nb oxidation peak; A, B, C—Nb reduction peak

    图  3  NbS2@MoS2纳米花和纳米片的XRD图谱

    Figure  3.  XRD patterns of the NbS2@MoS2 nanoflowers and nanosheets

    图  4  NbS2@MoS2纳米花 (a)、NbS2@MoS2纳米片 (b) 的SEM图像;NbS2@MoS2纳米花 (c)、NbS2@MoS2纳米片 (d) 的EDS图像;NbS2@MoS2纳米花 (e)、NbS2@MoS2纳米片 (f) 的元素分布图像

    Figure  4.  SEM images of NbS2@MoS2 nanoflowers (a) and NbS2@MoS2 nanosheets (b); EDS images of NbS2@MoS2 nanoflowers (c) and NbS2@MoS2 nanosheets (d); Elemental mapping images of NbS2@MoS2 nanoflowers (e) and NbS2@MoS2 nanosheets (f)

    图  5  NbS2@MoS2纳米花TEM图像 (a)、选区电子衍射图像(SAED) (b)、HRTEM图像 (c) 和矩形区域A中的快速傅里叶变换(FFTs)和逆傅里叶变换图像(IFFTs) (d)

    Figure  5.  TEM images (a), selected area electron diffraction (SAED) pattern (b), HRTEM images (c), fast fourier transform (FFTs) and inverse fast fourier transform (IFFTs) of rectangle “A” (d) of NbS2@MoS2 nanoflowers

    图  6  NbS2@MoS2纳米片TEM图像 (a)、SAED图像 (b)、HRTEM图像 (c) 和矩形区域A中的 FFTs和 IFFTs 图像 (d)

    Figure  6.  TEM images (a), SAED pattern (b), HRTEM images (c) and FFTs and IFFTs of rectangle “A” (d) of NbS2@MoS2 nanosheets

    图  7  NbS2@MoS2纳米花Nb3d的XPS图谱

    Figure  7.  XPS spectra of Ni3d for the NbS2@MoS2 nanosheets

    图  8  NbS2@MoS2纳米花Mo3d、MoS2和S2s的XPS图谱

    Figure  8.  XPS spectra of Mo3d, MoS2 and S2s for the NbS2@MoS2 nanosheets

    图  9  NbS2@MoS2纳米花S2p和MoS2的XPS图谱

    Figure  9.  XPS spectra of S2p and MoS2 for the NbS2@MoS2 nanosheets

    图  10  MoS2纳米花、MoS2纳米片、NbS2@MoS2纳米花、NbS2@MoS2纳米片和铂电解水制氢(HER)性能:(a)极化曲线;(b) 极化曲线对应的塔菲尔斜率;(c) 在200 mV过电位下交流阻抗图;(d) 不同电流密度与扫描速率下的双电层电容(Cdl);(e) NbS2@MoS2纳米花初始极化曲线和循环1000圈后的极化曲线;(f) NbS2@MoS2纳米花在−20.0 mA·cm−2和−100.0 mA·cm−2恒电流密度下分别持续10 h的恒电位曲线

    Figure  10.  Hydrogen evolution reaction (HER) performance of MoS2 nanoflowers, MoS2 nanosheets, NbS2@MoS2 nanoflowers, NbS2@MoS2 nanosheets and Pt: (a) LSV curves; (b) Polarization curves derived Tafel slopes for corresponding electrocatalysts; (c) Nyquist plots of corresponding electrocatalysts at the overpotential of 200 mV; (d) Difference in current density plotted against the scan rate for the determination of the double-layer capacitance (Cdl); (e) LSV curves of the NbS2@MoS2 nanoflowers for the initial and 1000 cycles; (f) Chronopotentiostatic curves of NbS2@MoS2 nanosheets at a constant current density of −20.0 mA·cm−2 for 10 h and −100.0 mA·cm−2 for another 10 h

    Rs—Solution resistance; Rct—Contact resistance; Cdl—Double-layer capacitance; RHE—Reversible hydrogen electrode

    图  11  NbS2@MoS2纳米花电极耐久性测试前 (a) 和测试后 (b) 的SEM图像及EDS元素扫描图像

    Figure  11.  SEM images and EDS images of the NbS2@MoS2 nanoflowers electrode before (a) and after the durability test (b)

  • [1] DU H L, HODGETTS R Y, CHATTI M, et al. Is molybdenum disulfide modified with molybdenum metal catalytically active for the nitrogen reduction reaction?[J]. Journal of the Electrochemical Society,2020,167(14):146507. doi: 10.1149/1945-7111/abc1a8
    [2] ZHANG G H, CHANG H Q, WANG L, et al. Study on reduction of MoS2 powders with activated carbon to produce Mo2C under vacuum conditions[J]. International Journal of Minerals, Metallurgy and Materials,2018,25(4):405-412. doi: 10.1007/s12613-018-1585-8
    [3] RHEEM Y, PARK S H, YU S, et al. Electrospun hybrid MoS2 nanofibers for high-efficiency electrocatalytic hydrogen evolution reaction[J]. Journal of the Electrochemical Society,2020,167(6):066522.
    [4] YU S H, CHEN W Z, WANG H Y, et al. Engineering sulfide-phosphide based double catalysts on 3D nickel phosphides framework for electrolytic hydrogen evolution: Activating short-range crystalline MoS2 with Ni5P4-Ni2P template[J]. Journal of the Electrochemical Society,2020,167(2):26511. doi: 10.1149/1945-7111/ab6a85
    [5] JARAMILLO T F, JØRGENSEN K P, BONDE J, et al. Identifi-cation of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science,2007,317(5834):100. doi: 10.1126/science.1141483
    [6] LAURSEN A B, KEGNAES S, DAHL S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy & Envi-ronmental Science,2012,5(2):5577-5591.
    [7] LIU N, YANG L C, WANG S N, et al. Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution[J]. Jour-nal of Power Sources,2015,275:588-594. doi: 10.1016/j.jpowsour.2014.11.039
    [8] SUN Y G, ALIMOHAMMADI F, ZHANG D T, et al. Enabling colloidal synthesis of edge-oriented MoS2 with expanded interlayer spacing for enhanced HER catalysis[J]. Nano Letters,2017,17(3):1963-1969. doi: 10.1021/acs.nanolett.6b05346
    [9] HUANG H L, CHEN L Q, LIU C H, et al. Hierarchically nanostructured MoS2 with rich in-plane edges as a high-performance electrocatalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2016,4(38):14577-14585. doi: 10.1039/C6TA06174E
    [10] LUKOWSKI M A, DANIEL A S, MENG F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society,2013,135(28):10274-10277. doi: 10.1021/ja404523s
    [11] VOIRY D, YAMAGUCHI H, LI J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J]. Nature Materials,2013,12(9):850-855. doi: 10.1038/nmat3700
    [12] LUKOWSKI M A, DANIEL A S, ENGLISH C R, et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets[J]. Energy & Environmental Science,2014,7(8):2608-2613.
    [13] EFTEKHARI A. Correction: Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications[J]. Journal of Materials Chemistry A,2020,8(3):1480. doi: 10.1039/C9TA90302J
    [14] ZHOU X F, LIN S H, YANG X L, et al. MoSx-coated NbS2 nanoflakes grown on glass carbon: An advanced electrocatalyst for the hydrogen evolution reaction[J]. Nanoscale,2018,10(7):3444-3450. doi: 10.1039/C7NR09172A
    [15] PAN H. Metal dichalcogenides monolayers: Novel catalysts for electrochemical hydrogen production[J]. Scienti-fic Reports,2014,4(1):5348.
    [16] LIU Y Y, WU J J, HACKENBERG K P, et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution[J]. Nature Energy,2017,2(9):17127. doi: 10.1038/nenergy.2017.127
    [17] GUO X X, DU H T, QU F L, et al. Recent progress in electrocatalytic nitrogen reduction[J]. Journal of Materials Chemistry A,2019,7(8):3531-3543. doi: 10.1039/C8TA11201K
    [18] ZHAO S H, HOTTA T, KORETSUNE T, et al. Two-dimensional metallic NbS2: Growth, optical identification and transport properties[J]. 2D Materials,2016,3:25027. doi: 10.1088/2053-1583/3/2/025027
    [19] FU Q D, WANG X W, ZHOU J D, et al. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2[J]. Chemistry of Materials,2018,30(12):4001-4007. doi: 10.1021/acs.chemmater.7b05117
    [20] ZHAO X J, LI Y B, ZHAO C, et al. Hierarchical ultrathin Mo/MoS2(1−xy)Px nanosheets assembled on P, N Co-doped carbon nanotubes for hydrogen evolution in both acidic and alkaline electrolytes[J]. Small,2020,16(51):2004973. doi: 10.1002/smll.202004973
    [21] QIU H, ZHENG H Y, JIN Y H, et al. Dopamine-derived N-doped carbon-encapsulated MoS2 microspheres as a high-performance anode for sodium-ion batteries[J]. Ionics,2020,26(11):5543-5551. doi: 10.1007/s11581-020-03734-y
    [22] VANDALON V, VERHEIJEN M A, KESSELS W M M, et al. Atomic layer deposition of Al-doped MoS2: Synthesizing a p-type 2D semiconductor with tunable carrier density[J]. ACS Applied Nano Materials,2020,3(10):10200-10208. doi: 10.1021/acsanm.0c02167
    [23] ZHOU G Y, WU X M, ZHAO M M, et al. Interfacial engineering-triggered bifunctionality of CoS2/MoS2 nanocubes/nanosheet arrays for high-efficiency overall water splitting[J]. ChemSusChem,2021,14(2):699-708. doi: 10.1002/cssc.202002338
    [24] FAN C, YUE X Y, SHEN X P, et al. One-pot hydrothermal synthesis of Ni3S2/MoS2/FeOOH hierarchical microspheres on Ni foam as a high-efficiency and durable dual-function electrocatalyst for overall water splitting[J]. ChemElectroChem,2021,8(4):665-674. doi: 10.1002/celc.202001430
    [25] JIANG R D, DENG B, PI L, et al. Molten electrolyte-modulated electrosynthesis of multi-anion Mo-based lamellar nanohybrids derived from natural minerals for boosting hydrogen evolution[J]. ACS Applied Materials & Interfaces,2020,12(52):57870-57880.
    [26] YANG H, CHEN Y X, WANG C B, et al. Confined growth of ultrafine Mo2C nanoparticles embedded in N-doped carbon nanosheet for water splitting[J]. Journal of Alloys and Compounds,2020,842:155939. doi: 10.1016/j.jallcom.2020.155939
    [27] ZHOU J, XIAO H S, WENG W, et al. Interfacial confinement of Ni-V2O3 in molten salts for enhanced electrocatalytic hydrogen evolution[J]. Journal of Energy Chemistry,2020,50:280-285. doi: 10.1016/j.jechem.2020.03.048
    [28] MOHAMEDI M, SATO Y, YAMAMURA T. Examination of niobium electrochemistry from the reduction of Nb3Cl8 in molten LiCl-KCl eutectic[J]. Electrochimica Acta,1999,44(10):1559-1565. doi: 10.1016/S0013-4686(98)00288-6
    [29] YIN T Q, CHEN L, XUE Y, et al. Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl-KCl melt[J]. International Journal of Minerals, Metallurgy and Materials,2020,27(12):1657-1665. doi: 10.1007/s12613-020-2112-2
    [30] MAKHATOVA A, ULYKBANOVA G, SADYK S, et al. Degra-dation and mineralization of 4-tert-butylphenol in water using Fe-doped TiO2 catalysts[J]. Scientific Reports,2019,9(1):19284. doi: 10.1038/s41598-019-55775-7
    [31] SUN L F, ZHANG X M, LIU F C, et al. Vacuum level depen-dent photoluminescence in chemical vapor deposition-grown monolayer MoS2[J]. Scientific Reports,2017,7(1):16714. doi: 10.1038/s41598-017-15577-1
    [32] GU H F, LI G P, LIU C Z, et al. Considerable knock-on displacement of metal atoms under a low energy electron beam[J]. Scientific Reports,2017,7(1):184. doi: 10.1038/s41598-017-00251-3
    [33] GNANASEKAR P, PERIYANAGOUNDER D, KULANDAIVEL J. Vertically aligned MoS2 nanosheets on graphene for highly stable electrocatalytic hydrogen evolution reactions[J]. Nanoscale,2019,11(5):2439-2446. doi: 10.1039/C8NR10092F
    [34] GNANASEKAR P, RANJITH K S, MANIVEL P, et al. Hierarchical NbS2/MoS2-carbon nanofiber electrode for highly efficient and stable hydrogen evolution reaction at all ranges of pH[J]. ACS Applied Energy Materials,2020,3(7):6717-6725. doi: 10.1021/acsaem.0c00856
    [35] CHEN B B, LI X F, LI X, et al. Facile fabrication of hierarchical carbon fiber-MoS2 ultrathin nanosheets and its tribological properties[J]. RSC Advances,2016,6(65):60446-60453. doi: 10.1039/C6RA11419A
    [36] PAULRAJ G, VENKATESH P S, DHARMARAJ P, et al. Stable and highly efficient MoS2/Si NWs hybrid heterostructure for photoelectrocatalytic hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2020,45(3):1793-1801. doi: 10.1016/j.ijhydene.2019.11.051
  • 加载中
图(11)
计量
  • 文章访问数:  1381
  • HTML全文浏览量:  559
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-08-18
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-24
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回