留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料压力容器金属内胆自紧后的屈曲可靠性分析

薛姝楠 张国 朱海洋 王磊 任明法

薛姝楠, 张国, 朱海洋, 等. 复合材料压力容器金属内胆自紧后的屈曲可靠性分析[J]. 复合材料学报, 2022, 39(10): 5032-5040. doi: 10.13801/j.cnki.fhclxb.20211015.002
引用本文: 薛姝楠, 张国, 朱海洋, 等. 复合材料压力容器金属内胆自紧后的屈曲可靠性分析[J]. 复合材料学报, 2022, 39(10): 5032-5040. doi: 10.13801/j.cnki.fhclxb.20211015.002
XUE Shunan, ZHANG Guo, ZHU Haiyang, et al. Buckling reliability analysis of the metal liner of composite pressure vessel after autofrettage[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5032-5040. doi: 10.13801/j.cnki.fhclxb.20211015.002
Citation: XUE Shunan, ZHANG Guo, ZHU Haiyang, et al. Buckling reliability analysis of the metal liner of composite pressure vessel after autofrettage[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5032-5040. doi: 10.13801/j.cnki.fhclxb.20211015.002

复合材料压力容器金属内胆自紧后的屈曲可靠性分析

doi: 10.13801/j.cnki.fhclxb.20211015.002
基金项目: 国家自然科学基金 (U1837204)
详细信息
    通讯作者:

    张国,博士生,研究方向为复合材料压力容器结构分析 E-mail: zhangguo2000@sina.com

  • 中图分类号: TB331

Buckling reliability analysis of the metal liner of composite pressure vessel after autofrettage

  • 摘要: 建立了一种针对复合材料压力容器金属内胆自紧后的局部屈曲可靠性分析方法。基于凹陷对内胆界面压力和残余弯矩影响的解析模型,结合有限元数值仿真分析方法,进行了金属内胆局部屈曲分析;基于蒙特卡洛算法,建立了分别针对复合材料压力容器内胆和缠绕层设计变量的抽样方法;采用径向基函数(Radial basic function,RBF)代理模型替代了内胆屈曲计算的有限元分析模型,建立了自紧后压力容器金属内胆局部屈曲可靠性问题的快速分析方法。以30 L柱形纤维缠绕复合材料铝合金内胆压力容器为例,分析了内胆设计参数与缠绕层设计参数不确定性对内胆屈曲可靠性的影响。结果表明:在计算范围内内胆屈曲概率与自紧压力正相关;内胆厚度的随机性对压力容器内胆屈曲概率的影响随自紧压力增加呈近似直线增加;单独考虑内胆半径、缠绕层厚度及缠绕层模量,屈曲概率随自紧压力变化趋势为一条增速先缓再快再变为平缓的递增曲线。

     

  • 图  1  金属内胆屈曲可靠性分析流程图

    Figure  1.  Calculation flow chart of buckling reliability analysis of metal liners

    RBF—Radial basic function

    图  2  复合压力容器尺寸参数(单位:mm)

    Figure  2.  Size parameters of composite pressure vessel (Unit: mm)

    图  3  复合材料压力容器内胆自紧后凹陷附近残余弯矩的分布

    Figure  3.  Distribution of residual bending moment near depressions of the inner liner of composite pressure vessel after autofrettage process

    图  4  复合材料压力容器内胆自紧后凹陷附近界面压力的分布

    Figure  4.  Distribution of interface pressure near depressions of the inner liner of composite pressure vessel after autofrettage process

    图  5  分别考虑内胆半径和内胆厚度的复合材料压力容器内胆屈曲概率分布曲线

    Figure  5.  Liner buckling probability distribution curves of the inner liner of composite pressure vessel considering radius and thickness of the inner liner

    图  6  同时考虑内胆厚度与半径随机性的复合材料压力容器内胆屈曲概率曲线

    Figure  6.  Liner buckling probability distribution curve considering the randomness of liner thickness and radius for the inner liner of composite pressure vessel

    图  7  分别考虑缠绕层弹性模量和缠绕层厚度的复合材料压力容器内胆屈曲概率分布曲线

    Figure  7.  Inner liner buckling probability distribution curves of the inner liner of composite pressure vessel considering elastic modulus and thickness of wound layer

    图  8  同时考虑缠绕层随机性的复合材料压力容器内胆屈曲概率曲线

    Figure  8.  Inner liner buckling probability distribution curve of the inner liner of composite pressure vessel considering the randomness of wound layer

    图  9  分别考虑内胆和缠绕层随机性的复合材料压力容器内胆屈曲概率曲线

    Figure  9.  Inner liner buckling probability distribution curves of the inner liner of composite pressure vessel considering the randomness of inner liner and wound layer

    图  10  同时考虑内胆和缠绕层随机性的复合材料压力容器内胆屈曲概率曲线

    Figure  10.  Inner liner buckling probability distribution curve of the inner liner of composite pressure vessel considering the randomness of wound layer and inner liner

    表  1  6061-T6铝合金金属内胆的力学性能

    Table  1.   Mechanical properties of the 6061-T6 aluminum liner

    E/GPaνYield strength/
    MPa
    Ultimate strength/
    MPa
    700.28270320
    Notes: E—Elastic modulus; ν—Poisson's ratio.
    下载: 导出CSV

    表  2  T300碳纤维/环氧树脂缠绕层的力学性能

    Table  2.   Mechanical properties of T300 carbon fiber/epoxy winding layers

    E1/GPaE2/GPaE3/GPaG12/GPaG13/GPaν12ν23ν13
    1351010750.320.320.32
    Notes: G—Shear modulus; 1—Direction of fiber; 2—In-plane direction of the matrix; 3—Out-plane direction of the matrix.
    下载: 导出CSV

    表  3  复合材料压力容器各随机变量测定结果

    Table  3.   Results of random variables for composite pressure vessels

    Random variableMean value μStandard deviation σCoefficient of variation ν
    Radius of the inner liner/mm 152 0.76 0.005
    Thickness of the inner liner/mm 0.7 0.014 0.02
    Elastic modulus of the winding layer/MPa 135000 6750 0.05
    Thickness of the winding layer/mm 10.8 0.15 0.014
    下载: 导出CSV
  • [1] 王荣国, 赫晓东, 胡照会, 等. 超薄金属内胆复合材料压力容器的结构分析[J]. 复合材料学报, 2010, 27(4):131-138. doi: 10.13801/j.cnki.fhclxb.2010.04.029

    WANG Rongguo, HE Xiaodong, HU Zhaohui, et al. Structure analysis of composite pressure vessel with ultra-thin metallic liner[J]. Acta Materiae Compositae Sinica,2010,27(4):131-138(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.04.029
    [2] 林峰, 陈建军, 曹鸿钧. 复合材料压力容器的概率与区间可靠性设计[J]. 西安电子科技大学学报, 2017, 44(1):45-51.

    LIN Feng, CHEN Jianjun, CAO Hongjun. Probabilistic and interval reliability design of the composite pressure vessel[J]. Journal of Xidian University,2017,44(1):45-51(in Chinese).
    [3] MURTHY P L N, THESKEN J C, PHOENIX S L, et al. Stress rupture life reliability measures for composite overwrapped pressure vessels[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Honolulu: American Institute of Aeronautics and Astronautics, 2007: 1-12.
    [4] 林国庆, 王茂廷, 时黛. 基于ANSYS中Monte-Carlo法对带局部夹套卧式容器的可靠性分析[J]. 轻工机械, 2012, 30(1):99-102, 107. doi: 10.3969/j.issn.1005-2895.2012.01.025

    LIN Guoqing, WANG Maoting, SHI Dai. Reliability analysis of horizontal container with local jacket based on Monte-Carlo method in ANSYS software[J]. Light Industry Machinery,2012,30(1):99-102, 107(in Chinese). doi: 10.3969/j.issn.1005-2895.2012.01.025
    [5] MURTHY P L N. Reliability of COPVs accounting for margin of safety on design burst[R]. Washington: NASA, 2012: 1-18.
    [6] ZHANG T. Reliability analysis of pressure vessels marine engineering based on numerical simulation analysis[J]. Journal of Coastal Research,2019,98(1):55-57. doi: 10.2112/SI98-014.1
    [7] 刘小宁. 钢制薄壁外压圆筒的可靠性稳定系数[J]. 化工设计, 2003, 13(3):26-30. doi: 10.3969/j.issn.1007-6247.2003.03.008

    LIU Xiaoning. Reliability buckling safety of thin steel-walled external pressure vessel[J]. Chemical Engineering Design,2003,13(3):26-30(in Chinese). doi: 10.3969/j.issn.1007-6247.2003.03.008
    [8] 吴元祥, 刘小宁, 袁小会, 等. 薄壁外压容器临界失稳强度可靠度的研究[J]. 湖北工业大学学报, 2009, 24(1):53-57. doi: 10.3969/j.issn.1003-4684.2009.01.017

    WU Yuanxiang, LIU Xiaoning, YUAN Xiaohui, et al. Research on buckling critical strength reliability of steel thin wall external pressure vessels[J]. Journal of Hubei University of Technology,2009,24(1):53-57(in Chinese). doi: 10.3969/j.issn.1003-4684.2009.01.017
    [9] CAI B, LIU Y, LIU Z, et al. Reliability-based load and resistance factor design of composite pressure vessel under external hydrostatic pressure[J]. Composite Structures,2011,93(11):2844-2852. doi: 10.1016/j.compstruct.2011.05.020
    [10] 张国, 朱海洋, 蔡雅琪, 等. 复合材料压力容器含凹陷内胆屈曲的有限元分析[J]. 复合材料学报, 2022, 39(3):1343-1352. doi: 10.13801/j.cnki.fhclxb.20210518.004

    ZHANG Guo, ZHU Haiyang, CAI Yaqi, et al. Finite element analysis of the buckling of the liner of composite pressure vessel with depression[J]. Acta Materiae Compositae Sinica,2022,39(3):1343-1352(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210518.004
    [11] HU Z H, LIU H J, WANG R G, et al. The study on buckling deformation of composite pressure vessel based on acoustic emission signals[C]//2009 Advanced Polymer Processing (Qingdao) Int'l Forum. Switzerland: Trans Tech Publications Ltd., 2009: 445-450.
    [12] OMARA A M, GUICE L K, STRAUGHAN W T, et al. Buckling models of thin circular pipes encased in rigid cavity[J]. Journal of Engineering Mechanics,1997,123(12):1294-1301. doi: 10.1061/(ASCE)0733-9399(1997)123:12(1294)
    [13] CHICUREL R. Shrink buckling of thin circular rings[J]. Journal of Applied Mechanics,1968,35(3):608-610. doi: 10.1115/1.3601259
    [14] REDDY J N. Theory and analysis of elastic plates and shells[M]. Second Edition. Florida: CRC Press, 1999.
    [15] PHOENIX S L, KEZIRIAN M T. Analysis of potential Ti-liner buckling after proof in Kevlar/epoxy COPV[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. California: Palm Springs, 2006: 1-25.
    [16] CAI B, LIU Y, LIU Z, et al. Probabilistic analysis of composite pressure vessel for subsea blowout preventers[J]. Engineering Failure Analysis,2012,19:97-108. doi: 10.1016/j.engfailanal.2011.09.009
    [17] KRISHNAVENI A, JEBAKANI D, JEYAKUMAR K, et al. Reliability based design of pressure vessels containing axial through crack using probabilistic fracture mechanics[J]. Australian Journal of Basic & Applied Sciences,2015,9(92):277-291.
    [18] 曹峰. 基于蒙特卡洛模拟法的维纳过程超越概率分析[D]. 长沙: 长沙理工大学, 2018.

    CAO Feng, Transcental probability analysis of wiener procedure base on Monte Carlo simultion[D]. Changsha: Changsha University of Science and Technology, 2018(in Chinese).
    [19] 林森. 基于响应面方法的复合材料压力容器可靠性分析[D]. 大连: 大连理工大学, 2019.

    LIN Sen. Reliability analysis of composite high pressure vessels based on response surface method[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  987
  • HTML全文浏览量:  481
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 修回日期:  2021-09-16
  • 录用日期:  2021-10-11
  • 网络出版日期:  2021-10-18
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回