留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于快速响应f-La2O3/PANI电致变色薄膜的制备与性能表征

戴彦 徐子芳 傅宇豪 张翔

戴彦, 徐子芳, 傅宇豪, 等. 基于快速响应f-La2O3/PANI电致变色薄膜的制备与性能表征[J]. 复合材料学报, 2023, 40(4): 2199-2208. doi: 10.13801/j.cnki.fhclxb.20220623.007
引用本文: 戴彦, 徐子芳, 傅宇豪, 等. 基于快速响应f-La2O3/PANI电致变色薄膜的制备与性能表征[J]. 复合材料学报, 2023, 40(4): 2199-2208. doi: 10.13801/j.cnki.fhclxb.20220623.007
DAI Yan, XU Zifang, FU Yuhao, et al. Preparation and characterization of electrochromic thin films based on fast response f-La2O3/PANI[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2199-2208. doi: 10.13801/j.cnki.fhclxb.20220623.007
Citation: DAI Yan, XU Zifang, FU Yuhao, et al. Preparation and characterization of electrochromic thin films based on fast response f-La2O3/PANI[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2199-2208. doi: 10.13801/j.cnki.fhclxb.20220623.007

基于快速响应f-La2O3/PANI电致变色薄膜的制备与性能表征

doi: 10.13801/j.cnki.fhclxb.20220623.007
基金项目: 安徽理工大学2021年研究生创新基金项目(2021 CX2086);安徽理工大学2021年大学生科普创新及科研育人示范项目(KYX202116)
详细信息
    通讯作者:

    徐子芳,博士,教授,硕士生导师,研究方向为电致变色材料 E-mail: zhfxubao@163.com

  • 中图分类号: TB332;O646

Preparation and characterization of electrochromic thin films based on fast response f-La2O3/PANI

Funds: 2021 Graduate Innovation Fund Project of Anhui University of Science and Technology (2021 CX2086); 2021 College Students Science Innovation and Scientific Research Education Demonstration Project of Anhui University of Science and Technology (KYX202116)
  • 摘要: 基于电致变色薄膜在军事伪装、建筑节能、汽车等工业领域具有重要研发前景,研究通过硅烷偶联剂KH-550对氧化镧(La2O3)表面进行修饰(f-La2O3),并与导电聚合物聚苯胺(PANI)复合制备f-La2O3/PANI电致变色材料。利用XRD、FTIR、SEM-EDS、UV-vis、电化学工作站对f-La2O3/PANI电极与纯PANI电极进行对比分析,重点研究f-La2O3掺入量对PANI结构形貌、电化学性能及电致变色性能的影响。研究结果表明:f-La2O3的掺入使PANI纤维有向细小化方向变化的趋势,其复合材料较纯PANI具有更高的结晶度和分子链取向;f-La2O3会打破PANI的网络交联结构导致复合材料的电化学性能有所降低,但可以加快PANI质子化和脱质子化的转变进程,并有效抑制薄膜电致变色过程中PANI的氧化降解;当镧胺比1∶3.5时,f-La2O3/PANI复合材料的电致变色性能达到最佳,波长570 nm处的着色效率(CE)为22.81 cm2·C−1,褪色、着色响应时间(τb/τc)分别为1.29 s、1.33 s,经320次着褪色循环后薄膜电化学活性保持在初始的50%左右。

     

  • 图  1  La2O3改性机制[19]

    Figure  1.  La2O3 modification mechanism[19]

    图  2  f-La2O3/PANI薄膜电极制备流程

    Figure  2.  Preparation process of f-La2O3/PANI thin film electrode

    ITO—Indium tin oxide

    图  3  PANI与f-La2O3/PANI复合材料的XRD图谱(插图:f-La2O3的XRD图谱)

    Figure  3.  XRD patterns of PANI and f-La2O3/PANI composite (Inset: XRD pattern of f-La2O3)

    图  4  PANI与f-La2O3/PANI复合材料的红外图谱(插图:La2O3与f-La2O3的红外图谱)

    Figure  4.  FTIR spectra of PANI and f-La2O3/PANI composite (Inset: FTIR spectra of La2O3 and f-La2O3)

    图  5  PANI与f-La2O3/PANI薄膜表面和截面的SEM图像:(a) 功能化前后的La2O3;(b) 纯 PANI ;f-La2O3/An摩尔比1∶4 (c)、1∶3.5 (含局部Mapping图) (d)、1∶3 (e)

    Figure  5.  SEM images of the surface and cross-section of PANI and f-La2O3/PANI films: (a) La2O3 before and after functionalization; (b) Pure PANI ; f-La2O3/An molar ratio1∶4 (c), 1∶3.5 (with local Mapping images) (d), 1∶3 (e)

    图  6  PANI与f-La2O3/PANI复合材料的电导率

    Figure  6.  Conductivity of PANI and f-La2O3/PANI composites

    图  7  PANI和f-La2O3/PANI薄膜(f-La2O3/An摩尔比1∶4、1∶3.5、1∶3)的循环伏安曲线

    Figure  7.  Cyclic voltammetry curves of PANI and f-La2O3/PANI films (f-La2O3/An molar ratio 1∶4, 1∶3.5, 1∶3)

    图  8  PANI和f-La2O3/PANI薄膜电极(f-La2O3/An摩尔比1∶4、1∶3.5、1∶3)的能奎斯特曲线和等效电路图

    Figure  8.  Nyquist curves and equivalent circuit diagram of PANI and f-La2O3/PANI films electrode (f-La2O3/An molar ratio 1∶4, 1∶3.5, 1∶3)

    Z'—Real part of impedance; Z''—Imaginary part of impedance; Rs—Solution resistance; Rct—Charge transfer resistance; CPE—Nonideal capacitance; W—Warburg Impendance

    图  9  PANI和f-La2O3/PANI薄膜电极(f-La2O3/An摩尔比1∶4、1∶3.5、1∶3)的计时电流曲线

    Figure  9.  Chronoamperometric curves of PANI and f-La2O3/PANI films electrode (f-La2O3/An molar ratio 1∶4, 1∶3.5, 1∶3)

    图  10  PANI和f-La2O3/PANI薄膜(f-La2O3/An摩尔比1∶4、1∶3.5、1∶3)的紫外-可见光吸收光谱

    Figure  10.  UV-vis absorption spectra of PANI and f-La2O3/PANI films (f-La2O3/An molar ratio 1∶4, 1∶3.5, 1∶3)

    图  11  PANI和f-La2O3/PANI薄膜(f-La2O3/An摩尔比1∶4、1∶3.5、1∶3)的循环稳定性

    Figure  11.  Cycling stability of PANI and f-La2O3/PANI films (f-La2O3/An molar ratio 1∶4, 1∶3.5, 1∶3)

    表  1  功能化La2O3(f-La2O3)/聚苯胺(PANI)复合材料的原料配比设计

    Table  1.   Raw material ratio design of functionalization-La2O3 (f-La2O3)/polyaniline (PANI) composite material

    Molar ratio
    f-La2O3∶An
    An/gf-La2O3/gDBSA/gHCl/gAPS/g
    Pure4.660.001.415.711.4
    1∶44.664.001.415.711.4
    1∶3.54.664.651.415.711.4
    1∶34.665.431.415.711.4
    Notes: An—Aniline; DBSA—Dodecylbenzenesulphonic acid; APS—Ammonium persulphate.
    下载: 导出CSV

    表  2  570 nm处PANI和f-La2O3/PANI薄膜的着色效率相关参数

    Table  2.   Parameters related to coloring efficiency of PANI and f-La2O3/PANI films at 570 nm

    SampleTb/%Tc/%τb/τc/sΔODQin/(C·cm−2)CE(λ)/(cm2·C−1)
    TypeMolar ratio La2O3∶An
    PANI83.048.46.29/6.010.230.1820 1.29
    f-La2O3/PANI1∶473.147.52.13/3.010.190.0438 4.27
    1∶3.562.835.81.29/1.330.240.010722.81
    1∶360.939.91.94/2.420.180.0275 6.68
    Notes: Tb/Tc—Faded/colored state film transmittance; τb/τc—Faded/colored state film response time; ΔOD—Optical density change; Qin—Charge injection rate; CE(λ)—Coloration efficiency; λ—Wavelength; When the voltage is −0.4 V, it is in the faded state, and +0.6 V is in the colored state; S=2.52 cm2.
    下载: 导出CSV
  • [1] KORENT A, SODERŽNIK K Ž, ŠTURM S, et al. A correlative study of polyaniline electropolymerization and its electrochromic behavior[J]. Journal of the Electrochemical Society,2020,167(10):106504. doi: 10.1149/1945-7111/ab9929
    [2] 张翔, 李文杰, 李森然, 等. 自供能电致变色器件研究进展[J]. 复合材料学报, 2021, 38(6): 1724-1733.

    ZHANG Xiang, LI Wenjie, LI Senran, et al. Research process in self-powered electrochromic devices[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1724-1733(in chinese).
    [3] KELLY F M, MEUNIER L, COCHRANE C, et al. Polyaniline: Application as solid state electrochromic in a flexible textile display[J]. Displays,2013,34(1):1-7. doi: 10.1016/j.displa.2012.10.001
    [4] WANG Y, GONG Z, ZENG Y, et al. High-properties electrochromic device based on TiO2@graphene/prussian blue core-shell nanostructures[J]. Chemical Engineering Journal,2022,431:134066. doi: 10.1016/j.cej.2021.134066
    [5] JAROSZ T, GEBKA K, STOLARCZYK A, et al. Transparent to black electrochromism—The “holy grail” of organic optoelectronics[J]. Polymers,2019,11(2):273. doi: 10.3390/polym11020273
    [6] WANG H, YAO C J, NIE H J, et al. Recent progress in integrated functional electrochromic energy storage devices[J]. Journal of Materials Chemistry C,2020,8(44):15507-15525. doi: 10.1039/D0TC03934A
    [7] ZHOU S, WANG S, ZHOU S, et al. An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film[J]. Nanoscale,2020,12(16):8934-8941. doi: 10.1039/D0NR01152E
    [8] WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development[J]. Materials Science and Engineering: R: Reports,2020,140:100524. doi: 10.1016/j.mser.2019.100524
    [9] CABUK M, GÜNDÜZ B. Controlling the optical properties of polyaniline doped by boric acid particles by changing their doping agent and initiator concentration[J]. Applied Surface Science,2017,424:345-351. doi: 10.1016/j.apsusc.2017.03.010
    [10] VAN N T, DO H H, TRUNG T Q, et al. Stable and multicolored electrochromic device based on polyaniline-tungsten oxide hybrid thin film[J]. Journal of Alloys and Compounds,2021,882:160718. doi: 10.1016/j.jallcom.2021.160718
    [11] ZHANG L, LI D, LI X, et al. Further explore on the behaviors of IR electrochromism of a double layer constructed by proton acid-doped polyaniline film and ITO layer[J]. Dyes and Pigments,2019,170:107570. doi: 10.1016/j.dyepig.2019.107570
    [12] ZHANG S, CHEN S, HU F, et al. Spray-processable, large-area, patterned and all-solid-state electrochromic device based on silica/polyaniline nanocomposites[J]. Solar Energy Materials and Solar Cells,2019,200:109951. doi: 10.1016/j.solmat.2019.109951
    [13] LIU D Y, SUI G X, BHATTACHARYYA D. Synthesis and characterisation of nanocellulose-based polyaniline conducting films[J]. Composites Science and Technology,2014,99:31-36. doi: 10.1016/j.compscitech.2014.05.001
    [14] BHADRA S, KHASTGIR D, SINGHA N K, et al. Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science,2009,34(8):783-810. doi: 10.1016/j.progpolymsci.2009.04.003
    [15] PENG H, YAN B, JIANG M, et al. A coral-like polyaniline/barium titanate nanocomposite electrode with double electric polarization for electrochromic energy storage applications[J]. Journal of Materials Chemistry A,2021,9(3):1669-1677. doi: 10.1039/D0TA08263E
    [16] JAMDEGNI M, KAUR A. Highly efficient dark to transparent electrochromic electrode with charge storing ability based on polyaniline and functionalized nickel oxide composite linked through a binding agent[J]. Electrochimica Acta,2020,331:135359. doi: 10.1016/j.electacta.2019.135359
    [17] NWANYA A C, JAFTA C J, EJIKEME P M, et al. Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method[J]. Electrochimica Acta,2014,128:218-225. doi: 10.1016/j.electacta.2013.10.002
    [18] XIONG S, WANG R, LI S, et al. Electrochromic behaviors of water-soluble polyaniline with covalently bonded acetyl ferrocene[J]. Journal of Electronic Materials,2018,47(7):3974-3982. doi: 10.1007/s11664-018-6281-y
    [19] JAMDEGNI M, KAUR-GHUMAAN S, KAUR A. Study of polyaniline and functionalized ZnO composite film linked through a binding agent for efficient and stable electrochromic applications[J]. Electrochimica Acta,2017,252:578-588. doi: 10.1016/j.electacta.2017.08.144
    [20] POUGET J P, JOZEFOWICZ M E, EPSTEIN A J, et al. X-ray structure of polyaniline[J]. Macromolecules,1991,24(3):779-789. doi: 10.1021/ma00003a022
    [21] DINARI M, MOMENI M M, GOUDARZIRAD M. Dye-sensitized solar cells based on nanocomposite of polyaniline/graphene quantum dots[J]. Journal of Materials Science,2016,51(6):2964-2971. doi: 10.1007/s10853-015-9605-9
    [22] HE Y. Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route[J]. Materials Chemistry and Physics,2005,92(1):134-137. doi: 10.1016/j.matchemphys.2005.01.033
    [23] 张云浩, 翟兰兰, 王彦, 等. 硅烷偶联剂KH-570表面改性纳米SiO2[J]. 材料科学与工程学报, 2012, 30(5):752-756.

    ZHANG Yunhao, ZHAI Lanlan, WANG Yan, et al. Surface modification of nano-SiO2 by silane coupling agent 3-(methacryloyloxy)propyltrimethoxysilane[J]. Journal of Materials Science & Engineering,2012,30(5):752-756(in Chinese).
    [24] NOROUZIAN R S, LAKOURAJ M M. Polyaniline-thiacalix[4]arene metallopolymer, self-doped, and externally doped conductive polymers[J]. Progress in Organic Coatings,2020,146:105731. doi: 10.1016/j.porgcoat.2020.105731
    [25] MARTINS J C, NETO J C M, PASSOS R R, et al. Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in low-frequency[J]. Solid State Ionics,2020,346:115198. doi: 10.1016/j.ssi.2019.115198
    [26] ZHANG S, SUN G, HE Y, et al. Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films[J]. ACS Applied Materials & Interfaces,2017,9(19):16426-16434.
    [27] GU H, GUO C, ZHANG S, et al. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires[J]. ACS Nano,2018,12(1):559-567. doi: 10.1021/acsnano.7b07360
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  470
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-06-06
  • 录用日期:  2022-06-17
  • 网络出版日期:  2022-06-24
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回