留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单宁改性酚醛基炭气凝胶的制备及其CO2吸附性能

周亚兰 罗路 范毜仔 杜官本 赵伟刚

周亚兰, 罗路, 范毜仔, 等. 单宁改性酚醛基炭气凝胶的制备及其CO2吸附性能[J]. 复合材料学报, 2022, 39(0): 1-10
引用本文: 周亚兰, 罗路, 范毜仔, 等. 单宁改性酚醛基炭气凝胶的制备及其CO2吸附性能[J]. 复合材料学报, 2022, 39(0): 1-10
Yalan ZHOU, Lu LUO, Mizi FAN, Guanben DU, Weigang ZHAO. Preparation and CO2 adsorption properties of tannin modified phenolic based carbon cryogels[J]. Acta Materiae Compositae Sinica.
Citation: Yalan ZHOU, Lu LUO, Mizi FAN, Guanben DU, Weigang ZHAO. Preparation and CO2 adsorption properties of tannin modified phenolic based carbon cryogels[J]. Acta Materiae Compositae Sinica.

单宁改性酚醛基炭气凝胶的制备及其CO2吸附性能

基金项目: 国家自然科学基金面上项目(31971593,32071688);福建省自然科学基金高校联合资助项目(2019J01386)
详细信息
    通讯作者:

    赵伟刚,博士,副教授,硕士生导师,研究方向为生物质多孔材料的开发及其在能源和环境领域应用研究 E-mail:weigang-zhao@fafu.edu.cn

  • 中图分类号: TQ323.1;0648.17;TQ424.29

Preparation and CO2 adsorption properties of tannin modified phenolic based carbon cryogels

  • 摘要: 基于绿色低成本的单宁所具有的大量反应性羟基,其与醛类反应具有与苯酚或间苯二酚相似的机制。在传统的酚醛树脂基(苯酚-尿素-甲醛)炭气凝胶的基础上,通过添加单宁进行改性,成功制备出新型高效的二氧化碳吸附用酚醛基炭气凝胶。通过扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)和氮气吸脱附测试对其表面化学和孔隙结构进行了系统表征,同时通过二氧化碳吸脱附测试对其CO2吸附量、选择性吸附以及吸附热等进行了研究。结果表明: 以绿色可再生的生物质原料单宁对原料进行部分取代,不仅可以显著降低产品成本,还可以明显改善其CO2的吸附性能。当单宁的添加量(15 g)为苯酚用量的50wt%时,样品具有最大的比表面积(1376.31 m2·g−1)和微孔体积(0.55 cm3·g−1),是一种极具潜力的气体吸附材料。其相应的CO2吸附量高达5.36 mmol·g−1,选择性吸附和吸附热则分别为16.84和34.49 kJ·mol−1,性能较未改性的酚醛基炭气凝胶显著改善,同时也优于大部分传统的炭气凝胶材料,这主要归因于其具有较高的比表面积、微孔体积、适宜的孔径分布和良好的三维网络结构。

     

  • 图  1  单宁改性酚醛基炭气凝胶(T/PUF)的制备流程图

    Figure  1.  Preparation flow chart of tannin modified phenolic based carbon cryogels (T/PUF)

    图  2  炭气凝胶的N2吸脱附曲线(a),孔径分布图(b)和累积孔体积-孔径分布图(c)

    Figure  2.  N2 adsorption desorption isotherms of carbon cryogels(a), Pore size distribution (b) and Cumulative pore volume - pore size distribution(c)

    图  3  不同单宁添加量的炭气凝胶的SEM图

    Figure  3.  SEM diagram of carbon cryogels with different tannin content

    图  4  有机气凝胶的傅里叶变换红外光谱图(a)和炭气凝胶的傅里叶变换红外光谱图(b)

    Figure  4.  FTIR spectra of organic cryogels (a) and FTIR spectra of carbon cryogels (b)

    图  5  炭气凝胶样品的XPS图

    Figure  5.  XPS spectra of carbon cryogels

    图  6  0℃下炭气凝胶的CO2吸附等温线(a),计算CO2/N2选择性时,压力范围小于0.20 bar时CO2和N2吸附的初始斜率(b)和不同吸附量下炭气凝胶的等量吸附热(c)

    Figure  6.  CO2 adsorption isotherms of carbon cryogels at 0℃ (a), Initial slope from CO2 and N2 adsorption in the pressure range of less than 0.20 bar for CO2/N2 selectivity calculation (b) and Isosteric adsorption heat of carbon cryogels at various adsorption quantities(c)

    表  1  炭气凝胶的孔隙结构参数

    Table  1.   Pore structure parameters of carbon cryogels

    SampleSBET /m2·g−1V0.99/cm3·g−1VDR/cm3·g−1L0/nmVDR/V0.99V0.99VDR/cm3·g−1
    16.7wt%T/PUF969.841.410.390.680.281.02
    33.3wt%T/PUF1127.641.920.450.810.231.47
    50wt%T/PUF1376.311.610.551.140.341.06
    PUF998.950.700.400.640.570.30
    Notes: SBET is specific surface area, V0.99 is total pore volume, VDR is micropore volume, and L0 is average micropore diameter.
    下载: 导出CSV

    表  2  炭气凝胶的元素相对含量

    Table  2.   Relative element content of carbon cryogels

    SampleRelative element content /at%
    CNO
    16.7wt%T/PUF93.771.394.84
    33.3wt%T/PUF91.802.106.10
    50wt%T/PUF89.442.018.55
    PUF90.482.377.15
    下载: 导出CSV

    表  3  不同C元素(at%)、N元素(at%)、O元素(at%)的占比

    Table  3.   Ratio of various C-types (at%)、N-types (at%)、O-types (at%)

    C elementsN elementsO elements
    C1C2C3C4C5N1N2N3N4O1O2O3O4O5
    Binding energy/eV284.6±0.1285.6±0.1287.1±0.1289.2±0.1290.1±0.1398.5±0.1400.4±0.2401.4±0.1403.4±0.2530.9±0.5532.5±0.8534.0±0.7536.0±0.3537.9±0.1
    16.7wt%T/PUF62.07.515.67.97.028.525.625.320.613.456.815.38.65.9
    33.3wt%T/PUF60.07.616.47.98.125.524.619.230.718.628.036.514.92.0
    50wt%T/PUF62.38.017.27.74.817.323.424.834.58.037.940.010.53.6
    PUF59.417.611.95.85.327.627.311.134.024.849.917.53.34.5
    下载: 导出CSV

    表  4  炭气凝胶的CO2吸附量及选择性结果

    Table  4.   CO2 adsorption and selective values from carbon cryogels

    16.7wt%T/
    PUF
    33.3wt%T/
    PUF
    50wt%T/
    PUF
    PUF
    CO2 adsorption /
    (mmol·g−1, 1 bar/0℃)
    4.965.305.364.61
    k113.43114.14412.22612.274
    k20.9961.0590.7261.055
    CO2/N2 selective values13.4813.3616.8411.63
    Notes: k1 and k2 is the initial slope of the CO2 and N2 isotherms, respectively.
    下载: 导出CSV
  • [1] XING W, LIU C, ZHOU Z, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy & environmental science,2012,5(6):7323.
    [2] LIM G, LEE K B, HAM H C. Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: A density functional theory approach[J]. The Journal of Physical Chemistry C,2016,120(15):8087-8095. doi: 10.1021/acs.jpcc.5b12090
    [3] SU F, LU C. CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption[J]. Energy & Environmental Science,2012,5(10):9021.
    [4] HAN J, ZHANG L, Zhao B, et al. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption[J]. Industrial Crops and Products,2019,128:290-297. doi: 10.1016/j.indcrop.2018.11.028
    [5] KHAN I U, OTHMAN M H D, ISMAIL A F, et al. Structural transition from two-dimensional ZIF-L to three-dimensional ZIF-8 nanoparticles in aqueous room temperature synthesis with improved CO2 adsorption[J]. Materials Characterization,2018,136:407-416. doi: 10.1016/j.matchar.2018.01.003
    [6] ELLO A S, YAPO J A, TROKOUREY A. N-doped carbon aerogels for carbon dioxide (CO2) capture[J]. African Journal of Pure and Applied Chemistry,2013,7(2):61-66.
    [7] MARQUES L M, CARROTT P J M, CARROTT M M L R. Carbon aerogels used in carbon dioxide capture[J]. Boletín del Grupo Españ ol del Carbón,2016(40):9-12.
    [8] LIU Q, HAN Y, QIAN X, et al. CO2 Adsorption over Carbon Aerogels the Effect of Pore and Surface Properties[J]. Chemistry Select,2019,4(11):3161-3168.
    [9] KESHAVARZ L, GHAANIM R, MACELROY J M D, et al. A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation[J]. Chemical Engineering Journal,2021,412:128604. doi: 10.1016/j.cej.2021.128604
    [10] LI Z, CHEN T, WU X, et al. Nitrogen-containing high surface area carbon cryogel from co-condensed phenol-urea-formaldehyde resin for CO2 capture[J]. Journal of Porous Materials,2018,26(3):847-854.
    [11] SUN M, BU Y, FENG J, et al. A melamine-formaldehyde-resorcinol aerogel as the sorbent of in-tube solid-phase microextraction[J]. Microchemical Journal,2020,159:105573. doi: 10.1016/j.microc.2020.105573
    [12] 李文翠, 郭树才, 朱玉东. 间甲酚甲醛气凝胶炭化工艺的研究[J]. 炭素技术, 2000(01):9-11. doi: 10.3969/j.issn.1001-3741.2000.01.003

    LI Wencui, GUO Shucai, ZHU Yudong. An investigation on carbonizing process of M-cresol and formaldehyde aerogels[J]. Carbon Techniques,2000(01):9-11(in Chinese). doi: 10.3969/j.issn.1001-3741.2000.01.003
    [13] 张倩, 禹筱元, 麦嘉雯, 等. 木质素酚醛基炭气凝胶的制备及电化学性能[J]. 高分子材料科学与工程, 2013, 29(4):152-154.

    ZHANG Qian, YU Xiaoyuan, MAI Jiawen, et al. Preparation and electrochemical performance of lignin-phenoic carbon aerogels[J]. Polymer Materials Science & Engineering,2013,29(4):152-154(in Chinese).
    [14] SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. The use of tannin to prepare carbon gels. Part I: Carbon aerogels[J]. Carbon,2011,49(8):2773-2784. doi: 10.1016/j.carbon.2011.03.007
    [15] SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. The use of tannin to prepare carbon gels. Part II. Carbon cryogels[J]. Carbon,2011,49(8):2785-2794. doi: 10.1016/j.carbon.2011.03.005
    [16] AMARAL-LABAT G, GRISHECHKO L I, FIERRO V, et al. Tannin-based xerogels with distinctive porous structures[J]. Biomass and Bioenergy,2013,56:437-445. doi: 10.1016/j.biombioe.2013.06.001
    [17] KIM Y H, OGATA T, NAKANO Y. Kinetic analysis of palladium(II) adsorption process on condensed-tannin gel based on redox reaction models[J]. Water Research,2007,41(14):3043-3050. doi: 10.1016/j.watres.2007.02.016
    [18] NAKANO Y, TAKESHITA K, TSUTSUMI T. Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel[J]. Water Research,2001,35(2):496-500. doi: 10.1016/S0043-1354(00)00279-7
    [19] AMARAL-LABAT G, GRISHECHKO L I, FIERRO V, et al. Unique bimodal carbon xerogels from soft templating of tannin[J]. Materials Chemistry and Physics,2015,149-150:193-201. doi: 10.1016/j.matchemphys.2014.10.006
    [20] ROBERTSON C, MOKAYA R. Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage[J]. Microporous and Mesoporous Materials,2013,179:151-156. doi: 10.1016/j.micromeso.2013.05.025
    [21] ADIO S O, GANIYU S A, USMAN M, et al. Facile and efficient nitrogen modified porous carbon derived from sugarcane bagasse for CO2 capture: Experimental and DFT investigation of nitrogen atoms on carbon frameworks[J]. Chemical Engineering Journal,2020,382:122964. doi: 10.1016/j.cej.2019.122964
    [22] LI Z L, ZHOU Y L, YAN W, et al. Cost-Effective Monolithic Hierarchical Carbon Cryogels with Nitrogen Doping and High-Performance Mechanical Properties for CO2 Capture[J]. ACS Appl Mater Interfaces,2020,12(19):21748-21760. doi: 10.1021/acsami.0c04015
    [23] HAO G, LI W, QIAN D, et al. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture[J]. Advanced Materials,2010,22(7):853-857. doi: 10.1002/adma.200903765
    [24] FAN X, ZHANG L, ZHANG G, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon,2013,61:423-430. doi: 10.1016/j.carbon.2013.05.026
    [25] RASINES G, LAVELA P, MACÍAS C, et al. N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions[J]. Carbon,2015,83:262-274. doi: 10.1016/j.carbon.2014.11.015
    [26] LI Y, ZOU B, HU C, et al. Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion[J]. Carbon,2016,99:79-89. doi: 10.1016/j.carbon.2015.11.074
    [27] XU Y, YANG Z, ZHANG G, et al. Excellent CO2 adsorption performance of nitrogen-doped waste biocarbon prepared with different activators[J]. Journal of Cleaner Production,2020,264:121645. doi: 10.1016/j.jclepro.2020.121645
    [28] LIU S, RAO L, YANG P, et al. Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin[J]. Journal of Environmental Sciences,2020,93:109-116. doi: 10.1016/j.jes.2020.04.006
    [29] ZHANG W, BAO Y, BAO A. Preparation of nitrogen-doped hierarchical porous carbon materials by a template-free method and application to CO2 capture[J]. Journal of Environmental Chemical Engineering,2020,8(3):103732. doi: 10.1016/j.jece.2020.103732
    [30] YUAN X, LI S, JEON S, et al. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis[J]. Journal of Hazardous Materials,2020,399:123010. doi: 10.1016/j.jhazmat.2020.123010
    [31] MA X, LI L, ZENG Z, et al. Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture[J]. Applied Surface Science,2019,481:1139-1147. doi: 10.1016/j.apsusc.2019.03.162
    [32] RAO L, LIU S, WANG L, et al. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance[J]. Chemical Engineering Journal,2019,359:428-435. doi: 10.1016/j.cej.2018.11.065
    [33] WANG Z, GOYAL N, LIU L, et al. N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases[J]. Chemical Engineering Journal,2020,396:125376. doi: 10.1016/j.cej.2020.125376
    [34] RAO L, MA R, LIU S, et al. Nitrogen enriched porous carbons from d-glucose with excellent CO2 capture performance[J]. Chemical Engineering Journal,2019,362:794-801. doi: 10.1016/j.cej.2019.01.093
  • 加载中
计量
  • 文章访问数:  134
  • HTML全文浏览量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 录用日期:  2022-01-03
  • 修回日期:  2021-12-24
  • 网络出版日期:  2022-02-12

目录

    /

    返回文章
    返回