留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单宁改性酚醛基炭气凝胶的制备及其CO2吸附性能

周亚兰 罗路 范毜仔 杜官本 赵伟刚

周亚兰, 罗路, 范毜仔, 等. 单宁改性酚醛基炭气凝胶的制备及其CO2吸附性能[J]. 复合材料学报, 2023, 40(1): 270-279. doi: 10.13801/j.cnki.fhclxb.20220110.002
引用本文: 周亚兰, 罗路, 范毜仔, 等. 单宁改性酚醛基炭气凝胶的制备及其CO2吸附性能[J]. 复合材料学报, 2023, 40(1): 270-279. doi: 10.13801/j.cnki.fhclxb.20220110.002
ZHOU Yalan, LUO Lu, FAN Mizi, et al. Preparation and CO2 adsorption properties of tannin modified phenolic based carbon cryogels[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 270-279. doi: 10.13801/j.cnki.fhclxb.20220110.002
Citation: ZHOU Yalan, LUO Lu, FAN Mizi, et al. Preparation and CO2 adsorption properties of tannin modified phenolic based carbon cryogels[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 270-279. doi: 10.13801/j.cnki.fhclxb.20220110.002

单宁改性酚醛基炭气凝胶的制备及其CO2吸附性能

doi: 10.13801/j.cnki.fhclxb.20220110.002
基金项目: 国家自然科学基金面上项目(31971593;32071688);福建省自然科学基金面上项目(2023J01133649)
详细信息
    通讯作者:

    赵伟刚,博士,副教授,硕士生导师,研究方向为生物质多孔材料的开发及其在能源和环境领域应用研究 E-mail:weigang-zhao@fafu.edu.cn

  • 中图分类号: TQ323.1; O648.17; TQ424.29

Preparation and CO2 adsorption properties of tannin modified phenolic based carbon cryogels

Funds: National Natural Science Fund (31971593; 32071688); Natural Science Foundation of Fujian Province (2023J01133649)
  • 摘要: 基于绿色低成本的单宁所具有的大量反应性羟基,其与醛类反应具有与苯酚或间苯二酚相似的机制。在传统的酚醛树脂基(苯酚-尿素-甲醛)炭气凝胶的基础上,通过添加单宁进行改性,成功制备出新型高效的CO2吸附用酚醛基炭气凝胶。通过扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)和氮气吸脱附测试对其表面化学和孔隙结构进行了系统表征,同时通过CO2吸脱附测试对其CO2吸附量、选择性吸附及吸附热等进行了研究。结果表明:以绿色可再生的生物质原料单宁对原料进行部分取代,不仅可以显著降低产品成本,还可以明显改善其CO2的吸附性能。当单宁的添加量(15 g)为苯酚用量的50wt%时,样品具有最大的比表面积(1376.31 m2·g−1)和微孔体积(0.55 cm3·g−1),是一种极具潜力的气体吸附材料。其相应的CO2吸附量高达5.36 mmol·g−1,选择性吸附和吸附热则分别为16.84和34.49 kJ·mol−1,性能较未改性的酚醛基炭气凝胶显著改善,同时也优于大部分传统的炭气凝胶材料,这主要归因于其具有较高的比表面积、微孔体积、适宜的孔径分布和良好的三维网络结构。

     

  • 图  1  单宁改性酚醛基炭气凝胶(T/PUF)的制备流程图

    Figure  1.  Preparation flow chart of tannin modified phenolic based carbon cryogels (T/PUF)

    图  2  炭气凝胶的N2吸脱附曲线 (a)、孔径分布图 (b)和累积孔体积-孔径分布图 (c)

    Figure  2.  N2 adsorption desorption isotherms of carbon cryogels (a), pore size distribution (b) and cumulative pore volume-pore size distribution (c)

    STP—Standard temperature and pressure

    图  3  不同单宁添加量的炭气凝胶的SEM图像: ((a), (b)) 16.7wt%T/PUF; ((c), (d)) 33.3wt%T/PUF; ((e), (f)) 50wt%T/PUF; ((g), (h)) PUF

    Figure  3.  SEM images of carbon cryogels with different tannin contents: ((a), (b)) 16.7wt%T/PUF; ((c), (d)) 33.3wt%T/PUF; ((e), (f)) 50wt%T/PUF; ((g), (h)) PUF

    图  4  有机气凝胶(a)和炭气凝胶(b)的傅里叶变换红外图谱

    Figure  4.  FTIR spectra of organic cryogels (a) and carbon cryogels (b)

    图  5  炭气凝胶样品的XPS图谱

    Figure  5.  XPS patterns of carbon cryogels

    图  6  0℃下炭气凝胶的CO2吸附等温线(a),计算CO2/N2选择性时压力范围小于20 kPa时CO2和N2吸附的初始斜率(b)和不同吸附量下炭气凝胶的等量吸附热(c)

    Figure  6.  CO2 adsorption isotherms of carbon cryogels at 0℃ (a), initial slope from CO2 and N2 adsorption in the pressure range of less than 20 kPa for CO2/N2 selectivity calculation (b) and isosteric adsorption heat of carbon cryogels at various adsorption quantities (c)

    表  1  单宁改性酚醛基炭气凝胶的配方设计

    Table  1.   Formulation design of tannin modified phenolic based carbon cryogels

    Sample Tannin/g Phenol/g Urea/g
    PUF 0 30 7.5
    16.7wt%T/PUF 5 25 7.5
    33.3wt%T/PUF 10 20 7.5
    50wt%T/PUF 15 15 7.5
    Notes: T—Tannin; PUF—Phenolic carbon aerogel.
    下载: 导出CSV

    表  2  炭气凝胶的孔隙结构参数

    Table  2.   Pore structure parameters of carbon cryogels

    SampleSBET/(m2·g−1)V0.99/(cm3·g−1)VDR/(cm3·g−1)L0/nmVDR/V0.99V0.99VDR/(cm3·g−1)
    PUF998.950.700.400.640.570.30
    16.7wt%T/PUF969.841.410.390.680.281.02
    33.3wt%T/PUF1127.641.920.450.810.231.47
    50wt%T/PUF1376.311.610.551.140.341.06
    Notes: SBET—Specific surface area; V0.99—Total pore volume; VDR—Micropore volume; L0—Average micropore diameter.
    下载: 导出CSV

    表  3  炭气凝胶的元素相对含量

    Table  3.   Relative element content of carbon cryogels

    SampleRelative element content /at%
    CNO
    16.7wt%T/PUF93.771.394.84
    33.3wt%T/PUF91.802.106.10
    50wt%T/PUF89.442.018.55
    PUF90.482.377.15
    下载: 导出CSV

    表  4  不同元素C、N、O的占比

    Table  4.   Ratio of various C, N, O elements

    C/at%N/at%O/at%
    C1C2C3C4C5N1N2N3N4O1O2O3O4O5
    Binding
    energy/eV
    284.6
    ±0.1
    285.6
    ±0.1
    287.1
    ±0.1
    289.2
    ±0.1
    290.1
    ±0.1
    398.5
    ±0.1
    400.4
    ±0.2
    401.4
    ±0.1
    403.4
    ±0.2
    530.9
    ±0.5
    532.5
    ±0.8
    534.0
    ±0.7
    536.0
    ±0.3
    537.9
    ±0.1
    16.7wt%T/PUF 62.0 7.5 15.6 7.9 7.0 28.5 25.6 25.3 20.6 13.4 56.8 15.3 8.6 5.9
    33.3wt%T/PUF 60.0 7.6 16.4 7.9 8.1 25.5 24.6 19.2 30.7 18.6 28.0 36.5 14.9 2.0
    50wt%T/PUF 62.3 8.0 17.2 7.7 4.8 17.3 23.4 24.8 34.5 8.0 37.9 40.0 10.5 3.6
    PUF 59.4 17.6 11.9 5.8 5.3 27.6 27.3 11.1 34.0 24.8 49.9 17.5 3.3 4.5
    下载: 导出CSV

    表  5  炭气凝胶的CO2吸附量及选择性结果

    Table  5.   CO2 adsorption and selective values from carbon cryogels

    CO2 adsorption/
    (mmol·g−1,
    100 kPa/0℃)
    k1k2CO2/N2
    selective values
    16.7wt%T/PUF 4.96 13.431 0.996 13.48
    33.3wt%T/PUF 5.30 14.144 1.059 13.36
    50wt%T/PUF 5.36 12.226 0.726 16.84
    PUF 4.61 12.274 1.055 11.63
    Note: k1 and k2—Initial slope of the CO2 and N2 isotherms, respectively.
    下载: 导出CSV
  • [1] XING W, LIU C, ZHOU Z, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy & Environmental Science,2012,5(6):7323-7327. doi: 10.1039/c2ee21653a
    [2] LIM G, LEE K B, HAM H C. Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: A density functional theory approach[J]. The Journal of Physical Chemistry C,2016,120(15):8087-8095. doi: 10.1021/acs.jpcc.5b12090
    [3] SU F, LU C. CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption[J]. Energy & Environmental Science,2012,5(10):9021-9027. doi: 10.1039/c2ee22647b
    [4] HAN J, ZHANG L, ZHAO B, et al. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption[J]. Industrial Crops and Products,2019,128:290-297. doi: 10.1016/j.indcrop.2018.11.028
    [5] KHAN I U, OTHMAN M H D, ISMAIL A F, et al. Structural transition from two-dimensional ZIF-L to three-dimensional ZIF-8 nanoparticles in aqueous room temperature synthesis with improved CO2 adsorption[J]. Materials Characterization,2018,136:407-416. doi: 10.1016/j.matchar.2018.01.003
    [6] ELLO A S, YAPO J A, TROKOUREY A. N-doped carbon aerogels for carbon dioxide (CO2) capture[J]. African Journal of Pure and Applied Chemistry,2013,7(2):61-66.
    [7] MARQUES L M, CARROTT P J M, CARROTT M M L R. Carbon aerogels used in carbon dioxide capture[J]. Boletín del Grupo Españ ol del Carbón,2016(40):9-12.
    [8] LIU Q, HAN Y, QIAN X, et al. CO2 adsorption over carbon aerogels the effect of pore and surface properties[J]. Chemistry Select,2019,4(11):3161-3168.
    [9] KESHAVARZ L, GHAANIM R, MACELROY J M D, et al. A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation[J]. Chemical Engineering Journal,2021,412:128604. doi: 10.1016/j.cej.2021.128604
    [10] LI Z, CHEN T, WU X, et al. Nitrogen-containing high surface area carbon cryogel from co-condensed phenol-urea-formaldehyde resin for CO2 capture[J]. Journal of Porous Materials,2018,26(3):847-854.
    [11] SUN M, BU Y, FENG J, et al. A melamine-formaldehyde-resorcinol aerogel as the sorbent of in-tube solid-phase microextraction[J]. Microchemical Journal,2020,159:105573. doi: 10.1016/j.microc.2020.105573
    [12] 李文翠, 郭树才, 朱玉东. 间甲酚甲醛气凝胶炭化工艺的研究[J]. 炭素技术, 2000(1):9-11. doi: 10.3969/j.issn.1001-3741.2000.01.003

    LI Wencui, GUO Shucai, ZHU Yudong. An investigation on carbonizing process of M-cresol and formaldehyde aerogels[J]. Carbon Techniques,2000(1):9-11(in Chinese). doi: 10.3969/j.issn.1001-3741.2000.01.003
    [13] 张倩, 禹筱元, 麦嘉雯, 等. 木质素酚醛基炭气凝胶的制备及电化学性能[J]. 高分子材料科学与工程, 2013, 29(4):152-154.

    ZHANG Qian, YU Xiaoyuan, MAI Jiawen, et al. Preparation and electrochemical performance of lignin-phenoic carbon aerogels[J]. Polymer Materials Science & Engineering,2013,29(4):152-154(in Chinese).
    [14] SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. The use of tannin to prepare carbon gels. Part I: Carbon aerogels[J]. Carbon,2011,49(8):2773-2784. doi: 10.1016/j.carbon.2011.03.007
    [15] SZCZUREK A, AMARAL-LABAT G, FIERRO V, et al. The use of tannin to prepare carbon gels:Part II—Carbon cryogels[J]. Carbon,2011,49(8):2785-2794. doi: 10.1016/j.carbon.2011.03.005
    [16] AMARAL-LABAT G, GRISHECHKO L I, FIERRO V, et al. Tannin-based xerogels with distinctive porous structures[J]. Biomass and Bioenergy,2013,56:437-445. doi: 10.1016/j.biombioe.2013.06.001
    [17] KIM Y H, OGATA T, NAKANO Y. Kinetic analysis of palladium(II) adsorption process on condensed-tannin gel based on redox reaction models[J]. Water Research,2007,41(14):3043-3050. doi: 10.1016/j.watres.2007.02.016
    [18] NAKANO Y, TAKESHITA K, TSUTSUMI T. Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel[J]. Water Research,2001,35(2):496-500. doi: 10.1016/S0043-1354(00)00279-7
    [19] AMARAL-LABAT G, GRISHECHKO L I, FIERRO V, et al. Unique bimodal carbon xerogels from soft templating of tannin[J]. Materials Chemistry and Physics,2015,149-150:193-201. doi: 10.1016/j.matchemphys.2014.10.006
    [20] ROBERTSON C, MOKAYA R. Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage[J]. Microporous and Mesoporous Materials,2013,179:151-156. doi: 10.1016/j.micromeso.2013.05.025
    [21] ADIO S O, GANIYU S A, USMAN M, et al. Facile and efficient nitrogen modified porous carbon derived from sugarcane bagasse for CO2 capture: Experimental and DFT investigation of nitrogen atoms on carbon frameworks[J]. Chemical Engineering Journal,2020,382:122964. doi: 10.1016/j.cej.2019.122964
    [22] LI Z L, ZHOU Y L, YAN W, et al. Cost-effective monolithic hierarchical carbon cryogels with nitrogen doping and high-performance mechanical properties for CO2 capture[J]. ACS Applied Materials & Interfaces,2020,12(19):21748-21760. doi: 10.1021/acsami.0c04015
    [23] HAO G, LI W, QIAN D, et al. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture[J]. Advanced Materials,2010,22(7):853-857. doi: 10.1002/adma.200903765
    [24] FAN X, ZHANG L, ZHANG G, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon,2013,61:423-430. doi: 10.1016/j.carbon.2013.05.026
    [25] RASINES G, LAVELA P, MACÍAS C, et al. N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions[J]. Carbon,2015,83:262-274. doi: 10.1016/j.carbon.2014.11.015
    [26] LI Y, ZOU B, HU C, et al. Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion[J]. Carbon,2016,99:79-89. doi: 10.1016/j.carbon.2015.11.074
    [27] XU Y, YANG Z, ZHANG G, et al. Excellent CO2 adsorption performance of nitrogen-doped waste biocarbon prepared with different activators[J]. Journal of Cleaner Production,2020,264:121645. doi: 10.1016/j.jclepro.2020.121645
    [28] LIU S, RAO L, YANG P, et al. Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin[J]. Journal of Environmental Sciences,2020,93:109-116. doi: 10.1016/j.jes.2020.04.006
    [29] ZHANG W, BAO Y, BAO A. Preparation of nitrogen-doped hierarchical porous carbon materials by a template-free method and application to CO2 capture[J]. Journal of Environmental Chemical Engineering,2020,8(3):103732. doi: 10.1016/j.jece.2020.103732
    [30] YUAN X, LI S, JEON S, et al. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis[J]. Journal of Hazardous Materials,2020,399:123010. doi: 10.1016/j.jhazmat.2020.123010
    [31] MA X, LI L, ZENG Z, et al. Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture[J]. Applied Surface Science,2019,481:1139-1147. doi: 10.1016/j.apsusc.2019.03.162
    [32] RAO L, LIU S, WANG L, et al. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance[J]. Chemical Engineering Journal,2019,359:428-435. doi: 10.1016/j.cej.2018.11.065
    [33] WANG Z, GOYAL N, LIU L, et al. N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases[J]. Chemical Engineering Journal,2020,396:125376. doi: 10.1016/j.cej.2020.125376
    [34] RAO L, MA R, LIU S, et al. Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance[J]. Chemical Engineering Journal,2019,362:794-801. doi: 10.1016/j.cej.2019.01.093
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  348
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2021-12-24
  • 录用日期:  2022-01-03
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回