留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维织物增强水泥基复合材料拉拔过程力阻响应和等效分层破坏模型

陶冶王之 张大伟 陈冠浩

陶冶王之, 张大伟, 陈冠浩. 碳纤维织物增强水泥基复合材料拉拔过程力阻响应和等效分层破坏模型[J]. 复合材料学报, 2022, 39(11): 5170-5180. doi: 10.13801/j.cnki.fhclxb.20220719.001
引用本文: 陶冶王之, 张大伟, 陈冠浩. 碳纤维织物增强水泥基复合材料拉拔过程力阻响应和等效分层破坏模型[J]. 复合材料学报, 2022, 39(11): 5170-5180. doi: 10.13801/j.cnki.fhclxb.20220719.001
TAOYE Wangzhi, ZHANG Dawei, CHEN Guanhao. Piezoresistive response of carbon fibric reinforced cementitious matrix during pull-out test and the establishment of equivalent delamination failure model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5170-5180. doi: 10.13801/j.cnki.fhclxb.20220719.001
Citation: TAOYE Wangzhi, ZHANG Dawei, CHEN Guanhao. Piezoresistive response of carbon fibric reinforced cementitious matrix during pull-out test and the establishment of equivalent delamination failure model[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5170-5180. doi: 10.13801/j.cnki.fhclxb.20220719.001

碳纤维织物增强水泥基复合材料拉拔过程力阻响应和等效分层破坏模型

doi: 10.13801/j.cnki.fhclxb.20220719.001
基金项目: 国家自然科学基金面上项目(51878604;52078454)
详细信息
    通讯作者:

    张大伟,博士,教授,博士生导师,研究方向为智能纤维复合材料及混凝土结构性能提升  E-mail: dwzhang@zju.edu.cn

  • 中图分类号: TU599

Piezoresistive response of carbon fibric reinforced cementitious matrix during pull-out test and the establishment of equivalent delamination failure model

  • 摘要: 碳纤维织物增强水泥基复合材料(CFRCM)被广泛研究并应用于混凝土结构加固和性能自监测,但目前碳纤维的力阻响应机制尚不明确。本文通过CFRCM纤维束的拉拔试验发现其荷载-位移曲线符合典型的粘结滑移三阶段特征,拉拔过程中的电阻变化也呈现出波动缓慢上升-快速增长-缓慢增长的三阶段特征,碳纤维束脱粘阶段的电阻增长率与极限拉拔力呈现中高度的正相关性。进一步基于拉拔过程碳纤维束的力阻响应建立了纤维等效分层破坏模型及计算方法,为电阻信息与受荷状态的相互转化提供了新思路。

     

  • 图  1  碳纤维织物增强水泥基复合材料(CFRCM)束拉拔试件示意图

    Figure  1.  Schematic diagram of carbon fabric reinforced cementitious matrix (CFRCM) pull-out specimen

    图  2  CFRCM拉拔试件成品

    Figure  2.  Finished product of CFRCM pull-out specimen

    图  3  加载装置

    Figure  3.  Loading device

    图  4  CFRCM束拉拔荷载-位移曲线

    Figure  4.  Load-displacement curves of CFRCM pull-out test

    图  5  CFRCM中纤维束分层破坏理论示意图[14]

    Figure  5.  Schematic diagram of delamination failure theory of fiber bundle in CFRCM[14]

    图  6  CFRCM试件加载后的SEM图像

    Figure  6.  SEM images of the CFRCM specimen after loading

    图  7  CFRCM束拉拔过程电阻变化率曲线

    Figure  7.  Resistance change rate curves in CFRCM pull-out process

    R0—Initial resistance; ΔR—Resistance change value

    图  8  CFRCM束拉拔过程中典型的荷载--位移和电阻变化率-位移曲线

    Figure  8.  Typical load-displacement and resistance rate-displacement curves during CFRCM pull-out process

    图  9  CFRCM束拉拔全过程力阻响应三阶段模型示意图

    Figure  9.  A three-stage model of the force-resistance response during CFRCM pull-out process

    图  10  CFRCM束拉拔试件∆RII⁄R0与极限拉拔力间的关系

    Figure  10.  Relationship between ∆RII⁄R0 and Pmax of CFRCM specimens

    图  11  CFRCM拉拔等效分层破坏模型示意图

    Figure  11.  Schematic diagram of CFRCM pull-out equivalent delamination failure model

    图  12  计算采用的摩擦滑移本构

    τ—Shear stress; μ—Displacement; τ0—Shear stress in friction phase; μ0—Beginning of friction phase for core filaments; ki—Equivalent bond stiffness of sleeve filaments; μi—Beginning of friction phase for sleeve filaments

    Figure  12.  Bond-slip constitutive used in the calculation

    图  13  分层破坏计算层数对CFRCM束拉拔试件极限荷载计算值的影响

    Figure  13.  Influence of layer number on calculation value of ultimate pull-out force of CFRCM specimens

    图  14  CFRCM束拉拔试件等效分层破坏计算结果

    Nt—Number of fracture fibers

    Figure  14.  Results of equivalent delamination failure of CFRCM specimens

    表  1  砂浆配合比

    Table  1.   Mass proportion of the ingredients in the cementitious matrix

    Mortar typeCement
    (P·O 42.5)/g
    Water/gMedium sand
    (0.5-1 mm)/g
    Fine sand
    (0-0.5 mm)/g
    Redispersible
    latex powder/g
    Plasticizer/g
    Low strength mortar10045133671.50.15
    下载: 导出CSV

    表  2  试件编号

    Table  2.   Specimen number

    Specimen numberLe/mmParallel specimenSpecimen numberLe/mmParallel specimen
    P-60-1 60 1 P-120-1 120 1
    P-60-2 2 P-120-2 2
    P-60-3 3 P-120-3 3
    P-60-4 4 P-120-4 4
    P-60-5 5 P-120-5 5
    Notes: P—Pull-out test; Le—Embedded length in mortar.
    下载: 导出CSV

    表  3  CFRCM束拉拔试件的极限拉拔力及脱粘阶段电阻变化幅度

    Table  3.   Ultimate pull-out force and resistance change in debonding stage of CFRCM specimens

    SpecimenUltimate pull-out force/NRII/R0/%SpecimenUltimate pull-out force/NRII/R0/%
    P-60-1 268.63 3.49 P-120-1 578.21 4.43
    P-60-2 537.62 11.23 P-120-2 398.36 3.64
    P-60-3 621.21 10.63 P-120-3 532.24 18.48
    P-60-4 347.44 3.00 P-120-4 655.07 5.73
    P-60-5 752.26 15.25 P-120-5 705.69 11.82
    Note: ΔRII—Resistance change of the debonding phase.
    下载: 导出CSV

    表  4  CFRCM束拉拔等效分层破坏模型计算过程关键参数

    Table  4.   Key parameters in the calculation of the equivalent delamination failure model of CFRCM specimens

    SpecimenNcoreηλs(0)λs(u0)SpecimenNcoreηλs(0)λs(u0)
    P-60-1 7140 0.47 0.010 0.430 P-120-1 7064 0.18 0.010 0.750
    P-60-2 4748 0.37 0.100 0.520 P-120-2 7157 0.12 0.010 0.780
    P-60-3 5967 0.28 0.035 0.550 P-120-3 5965 0.20 0.037 0.510
    P-60-4 7075 0.43 0.010 0.500 P-120-4 7374 0.09 0.010 0.750
    P-60-5 2148 0.35 0.190 0.580 P-120-5 3070 0.22 0.160 0.680
    Notes: Ncore—Number of core filaments; η—Initial fracture rate; λs(0), λs(u0)—Equivalent lap rate of fracture fibers when the displacement equal to 0 and u0, where u0 represents the beginning of the friction phase.
    下载: 导出CSV
  • [1] 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1):27-40. doi: 10.15951/j.tmgcxb.2015.01.004

    AI Shanxia, YIN Shiping, XU Shilang. A review on the development of research and application of textile reinforced concrete[J]. China Civil Engineering Journal,2015,48(1):27-40(in Chinese). doi: 10.15951/j.tmgcxb.2015.01.004
    [2] KOUTAS L N, TETTA Z, BOURNAS D A, et al. Strengthening of concrete structures with textile reinforced mortars: State-of-the-art review[J]. Journal of Composites for Construction,2019,23(1):03118001. doi: 10.1061/(ASCE)CC.1943-5614.0000882
    [3] ARBOLEDA D, CAROZZI F G, NANNI A, et al. Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix composites[J]. Journal of Composites for Construction,2016,20(3):04015063. doi: 10.1061/(ASCE)CC.1943-5614.0000626
    [4] FALESCHINI F, ZANINI M A, HOFER L, et al. Experimental behavior of reinforced concrete columns confined with carbon-FRCM composites[J]. Construction and Building Materials,2020,243:118296. doi: 10.1016/j.conbuildmat.2020.118296
    [5] FENG R, LI Y, ZHU J H, et al. Behavior of corroded circular RC columns strengthened by C-FRCM under cyclic loading[J]. Engineering Structures,2021,226:111311. doi: 10.1016/j.engstruct.2020.111311
    [6] 郑立霞. 机敏混凝土的导电性及传感特性研究[D]. 武汉: 武汉理工大学, 2011.

    ZHENG Lixia. Research on electric conductivity and sensing characteristic of smart concrete[D]. Wuhan: Wuhan University of Technology, 2011(in Chinese).
    [7] RANA S, SUBRAMANI P, FANGUEIRO R, et al. A review on smart self-sensing composite materials for civil engineering applications[J]. AIMS Materials Science,2016,3(2):357-379. doi: 10.3934/matersci.2016.2.357
    [8] CONOR P C, OWSTON C N. Electrical resistance of single carbon fibres[J]. Nature,1969,223(5211):1146-1147.
    [9] 郑立霞, 李卓球, 宋显辉, 等. 连续碳纤维单丝的应变电阻效应[J]. 功能材料, 2008(3):440-442. doi: 10.3321/j.issn:1001-9731.2008.03.028

    ZHENG Lixia, LI Zhuoqiu, ZHU Xianhui, et al. Effect of strain on the electrical resistance of continuous carbon fiber monofilament[J]. Journal of Functional Materials,2008(3):440-442(in Chinese). doi: 10.3321/j.issn:1001-9731.2008.03.028
    [10] KANG B G, HANNAWALD J, BRAMES-HUBER W. Electri-cal resistance measurement for damage analysis of carbon yarns[J]. Materials and Structures,2011,44(6):1113-1122. doi: 10.1617/s11527-010-9687-4
    [11] LI H, ZHOU W, OU J. Study on electro-mechanical behavior of unidirectional carbon fibre sheet without epoxy resin matrix[J]. Advances in Structural Engineering,2004,7(5):437-445. doi: 10.1260/1369433042863288
    [12] 周文松, 李惠, 欧进萍. 无环氧树脂基碳纤维束自监测功能[J]. 复合材料学报, 2005(2):63-66. doi: 10.3321/j.issn:1000-3851.2005.02.012

    ZHOU Wensong, LI Hui, OU Jinping. Self-monitoring performance of the carbon fiber sheet without epoxy resin matrix[J]. Acta Materiae Compositae Sinica,2005(2):63-66(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.02.012
    [13] ZHU W, BARTOS P J M. Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindentation method[J]. Cement and Concrete Research,1997,27(11):1701-1711. doi: 10.1016/S0008-8846(97)00155-5
    [14] BANHOLZER B. Bond behaviour of a multi-filament yarn embedded in a cementitious mateix[D]. Aachen: Rheinisch-Westfälischen Technischen Hochschule Aachen, 2004.
    [15] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2022.

    Standardization Administration of the People's Republic of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Press, 2022(in Chinese).
    [16] ZHU M, ZHU J H, UEDA T, et al. A method for evaluating the bond behavior and anchorage length of embedded carbon yarn in the cementitious matrix[J]. Construction and Building Materials,2020,255:119067. doi: 10.1016/j.conbuildmat.2020.119067
    [17] CAROZZI F G, COLOMBI P, FAVA G, et al. A cohesive interface crack model for the matrix-textile debonding in FRCM composites[J]. Composite Structures,2016,143:230-241. doi: 10.1016/j.compstruct.2016.02.019
    [18] CALABRESE A S, COLOMBI P, D’ANTINO T. Analytical solution of the bond behavior of FRCM composites using a rigid-softening cohesive material law[J]. Composites Part B: Engineering,2019,174:107051. doi: 10.1016/j.compositesb.2019.107051
    [19] DALALBASHI A, GHIASSI B, OLIVEIRA D V, et al. Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: Experimental and analytical modeling[J]. Composites Part B: Engineering,2018,143:250-268. doi: 10.1016/j.compositesb.2018.02.010
    [20] ZHANG X B, ALJEWIFI H, LI J. Failure mechanism investi-gation of continuous fibre reinforced cementitious composites by pull-out behaviour analysis[J]. Procedia Materials Science,2014,3:1377-1382. doi: 10.1016/j.mspro.2014.06.222
    [21] 陈冠浩. 干碳纤维束及其在CFRCM中力阻效应机理研究[D]. 杭州: 浙江大学, 2020.

    CHEN Guanhao. Mechanism research on piezoresistive effect of dry carbon fiber bundle and that in CFRCM[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
    [22] ZHANG X B, ALJEWIFI H, LI J. Failure behaviour investigation of continuous yarn reinforced cementitious compo-sites[J]. Construction and Building Materials,2013,47:456-464. doi: 10.1016/j.conbuildmat.2013.05.022
    [23] 吕泳. 碳纤维智能束的功能特性及其应用研究[D]. 武汉: 武汉理工大学, 2011.

    LV Yong. Functional properties and applications of smart polymer-, atrix carbon fiber bundle[D]. Wuhan: Wuhan University of Technology, 2011(in Chinese).
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  294
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-06-26
  • 录用日期:  2022-07-07
  • 网络出版日期:  2022-07-20
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回