留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导电炭黑Super-P对混凝土性能的影响

何威 李世磊 王亚伟 焦志男 李桂峰

何威, 李世磊, 王亚伟, 等. 导电炭黑Super-P对混凝土性能的影响[J]. 复合材料学报, 2021, 39(0): 1-13
引用本文: 何威, 李世磊, 王亚伟, 等. 导电炭黑Super-P对混凝土性能的影响[J]. 复合材料学报, 2021, 39(0): 1-13
Wei HE, Shilei LI, Yawei WANG, Zhinan JIAO, Guifeng LI. Effect of conductive carbon black super-P on concrete properties[J]. Acta Materiae Compositae Sinica.
Citation: Wei HE, Shilei LI, Yawei WANG, Zhinan JIAO, Guifeng LI. Effect of conductive carbon black super-P on concrete properties[J]. Acta Materiae Compositae Sinica.

导电炭黑Super-P对混凝土性能的影响

基金项目: 国家自然科学基金(51578477)
详细信息
    通讯作者:

    何威,博士,教授,研究方向为水泥基复合材料 E-mail:hewei@ysu.edu.cn

  • 中图分类号: TB332

Effect of conductive carbon black super-P on concrete properties

  • 摘要: 采用低成本和高稳定性的纳米导电炭黑Super-P(CBSP)作为水泥混凝土的添加剂。通过设置不同的水灰比和不同的CBSP掺量,研究了CBSP的加入对混凝土各方面性能的影响(即坍落度、力学性能、抗渗性能、导电性能和温敏性能)。通过SEM对混凝土微观形貌进行分析。实验结果显示,掺入纳米材料CBSP使得混凝土坍落度不断降低。随着CBSP的掺入量不断增大,使得混凝土的力学性能先提升后降低且各龄期变化趋势相似,且当CBSP的掺入量为0.75wt%时力学性能达到最大。同时混凝土的力学性能随水灰比的增加而降低。混凝土的抗渗性能随着CBSP掺量的增加而先提高后降低且当水灰比较大时抗渗性能有所降低。当CBSP掺入量为0.75~2wt%时,混凝土电阻率迅速降低。标准养护条件比室内干燥养护的混凝土电阻率低。不同水灰比混凝土之间电阻率相差较小。SEM显示了CBSP的填充孔隙和隧道导电作用。通过实验证明CBSP的加入可以改善混凝土的各项性能。

     

  • 图  1  粗细骨料级配曲线

    Figure  1.  Gradation curve of coarse and fine aggregate

    图  3  CBSP分散液的制备

    Figure  3.  Preparation of CBSP dispersion

    图  2  纳米导电炭黑Super-P(CBSP)不同倍数的SEM图像

    Figure  2.  SEM images of nano conductive carbon black super-P (CBSP) of different multiples

    图  4  制备CBSP混凝土试块流程图

    Figure  4.  Flow chart of preparing CBSP concrete test blocks

    图  5  各组CBSP混凝土拌合物的坍落度及其变化率

    Figure  5.  Slump and change rate of each group of CBSP concrete mixture

    图  6  CBSP与水泥颗粒混合状态

    Figure  6.  Mixing state of CBSP and cement particles

    图  7  不同水灰比CBSP混凝土抗压强度及其变化率

    Figure  7.  Compressive strength and change rate of CBSP concrete with different water cement ratios

    图  8  不同水灰比CBSP混凝土28天抗折强度及其变化率

    Figure  8.  Flexural strength and change rate of CBSP concrete with different water cement ratio at 28days

    图  9  两种水灰比下各组CBSP混凝土的渗水高度及其变化率

    Figure  9.  Water seepage height and change rate of each group of CBSP concrete under two water-cement ratios

    图  10  二电极法测量混凝土试块电阻率示意图

    Figure  10.  Schematic diagram of measuring resistivity of concrete test block by two electrode method

    图  11  不同养护条件下两种水灰比CBSP混凝土不同龄期电阻率随CBSP掺量变化的曲线

    Figure  11.  Resistivity curves of CBSP concrete with two water-cement ratios varying with CBSP content at different ages under different curing conditions

    图  12  两种水灰比CBSP混凝土的温敏性能

    Figure  12.  Temperature-sensitive properties of CBSP concrete with two water-cement ratios

    图  13  不同CBSP掺量的W/C=0.53混凝土SEM图像

    Figure  13.  SEM images of concrete W/C=0.53 with different CBSP contents

    表  1  P∙O 42.5水泥的化学成分组成(wt%)

    Table  1.   Chemical composition of P∙O 42.5 cement (wt%)

    SiO2Al2O3Fe2O3CaOMgOSO3Na2Oeqf-CaOCl
    21.477.173.1160.042.902.770.110.570.024
    下载: 导出CSV

    表  2  P∙O 42.5水泥的物理性能检测结果

    Table  2.   Physical performance test results of P∙O 42.5 cement

    Density /
    (g·cm−3)
    Degree of powderSetting timeStabilityFlexural
    strength /MPa
    Compressive
    strength/MPa
    Specific surface
    area /(m2·kg−1)
    80μ/
    %
    Normal
    consistency/%
    Initial
    setting/min
    Final
    set/min
    Ray type
    method/mm
    3 days28 days3 days28 days
    3.063510.2828.01702350.505.68.929.057.3
    下载: 导出CSV

    表  3  砂的筛分析结果

    Table  3.   Sieve analysis results of sand

    Sieve pore/mmProportion/%Cumulative proportion/%
    9.5
    4.7500
    2.3612.612.6
    1.1813.426
    0.603157
    0.3030.287.2
    0.158.295.4
    下载: 导出CSV

    表  5  CBSP混凝土试件编号

    Table  5.   Serial numbers of CBSP concretes

    Serial numberCement /(kg·m−3)Sand /(kg·m−3)Stone /(kg·m−3)Water/(kg·m−3)W/CCBSP/wt%
    0.00wt% CBSP/C-0.5338768311152050.530
    0.25wt% CBSP/C-0.5338768311152050.530.25
    0.50wt% CBSP/C-0.5338768311152050.530.5
    0.75wt% CBSP/C-0.5338768311152050.530.75
    1.00wt% CBSP/C-0.5338768311152050.531
    2.00wt% CBSP/C-0.5338768311152050.532
    3.00wt% CBSP/C-0.5338768311152050.533
    0.00wt% CBSP/ C-0.6338768311152440.630
    0.25wt% CBSP/ C-0.6338768311152440.630.25
    0.50wt% CBSP/ C-0.6338768311152440.630.5
    0.75wt% CBSP/ C-0.6338768311152440.630.75
    1.00wt% CBSP/ C-0.6338768311152440.631
    2.00wt% CBSP/ C-0.6338768311152440.632
    3.00wt% CBSP/ C-0.6338768311152440.633
    Notes: 0.00wt% CBSP/C-0.53—Concrete with water cement ratio of 0.53 and CBSP content of 0.00wt%,W/C—Water cement mass ratio.
    下载: 导出CSV

    表  4  CBSP的性能参数

    Table  4.   Performance parameters of CBSP

    TypeMean grain
    size/nm
    Specific
    area/(m2·g−1)
    DBP
    value
    Carbon
    content/wt%
    Volatile c
    ontent/vol%
    Ash
    content/%
    Density/
    (kg·m−3)
    pHSpecific
    resistance/(Ω·cm)
    Super-P Li4062290≥99.5≤0.15≤0.0512580.15~0.25
    下载: 导出CSV

    表  5  CBSP混凝土试件编号

    Table  5.   Serial numbers of CBSP concretes

    Serial numberCement /(kg·m−3)Sand /(kg·m−3)Stone /(kg·m−3)Water/(kg·m−3)W/CCBSP/wt%
    0.00wt% CBSP/C-0.5338768311152050.530
    0.25wt% CBSP/C-0.5338768311152050.530.25
    0.50wt% CBSP/C-0.5338768311152050.530.5
    0.75wt% CBSP/C-0.5338768311152050.530.75
    1.00wt% CBSP/C-0.5338768311152050.531
    2.00wt% CBSP/C-0.5338768311152050.532
    3.00wt% CBSP/C-0.5338768311152050.533
    0.00wt% CBSP/ C-0.6338768311152440.630
    0.25wt% CBSP/ C-0.6338768311152440.630.25
    0.50wt% CBSP/ C-0.6338768311152440.630.5
    0.75wt% CBSP/ C-0.6338768311152440.630.75
    1.00wt% CBSP/ C-0.6338768311152440.631
    2.00wt% CBSP/ C-0.6338768311152440.632
    3.00wt% CBSP/ C-0.6338768311152440.633
    Notes: 0.00wt% CBSP/C-0.53—Concrete with water cement ratio of 0.53 and CBSP content of 0.00wt%,W/C—Water cement mass ratio.
    下载: 导出CSV

    表  6  W/C=0.53 CBSP混凝土温敏性曲线拟合参数

    Table  6.   Fitting parameters of CBSP concrete temperature sensitivity curve with W/C=0.53

    Parameter0.00wt% CBSP/
    C-0.53
    0.25wt% CBSP/
    C-0.53
    0.50wt% CBSP/
    C-0.53
    0.75wt% CBSP/
    C-0.53
    1.00wt% CBSP/
    C-0.53
    2.00wt% CBSP/
    C-0.53
    3.00wt% CBSP/
    C-0.53
    A−0.55081−0.81745−101.319491.174620.033267.016146.63551
    B3 377.85963 442.25644313 277.24882 707.857473 019.87428204.24485109.4176
    R20.995970.99120.994830.987320.997050.957760.97458
    下载: 导出CSV

    表  7  W/C=0.63 CBSP混凝土温敏性曲线拟合参数

    Table  7.   Fitting parameters of CBSP concrete temperature sensitivity curve with W/C=0.63

    Parameter0.00wt% CBSP/
    B-0.63
    0.25wt% CBSP/
    B-0.63
    0.50wt% CBSP/
    B-0.63
    0.75wt% CBSP/
    B-0.63
    1.00wt% CBSP/
    B-0.63
    2.00wt% CBSP/
    B-0.63
    3.00wt% CBSP/
    B-0.63
    A1.087240.874821.335341.536961.511556.085716.43309
    B2 862.182042 926.4212 759.967662 665.372782 607.06713600.09686267.29325
    R20.986020.992560.994160.995590.993330.982620.98163
    下载: 导出CSV
  • [1] DAHLAN A S. Impact of nanotechnology on high performance cement and concrete[J]. Journal of Molecular Structure,2020:1223.
    [2] LIU D J, CHEN M J, XUE L, et al. The Effect of the Carbon Fiber on Concrete Compressive Strength[J]. Advanced Materials Research,2018,1145:106-111. doi: 10.4028/www.scientific.net/AMR.1145.106
    [3] JANGS H, HOCHSTEIN D P, KAWASHIMA S, et al. Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture[J]. Cement and Concrete Composites,2017,77(Complete):49-59.
    [4] DIMITAR DIMOV, IDDO AMIT, OLIVIER GORRIE, et al. Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications[J]. Advanced Functional Materials, 2018, 28(23).
    [5] ZHU P, LI H, LING Q, et al. Mechanical properties and microstructure of a graphene oxide–cement composite[J]. Cement and Concrete Composites,2015:58.
    [6] CHUAH S, ZHU P, SANJAYAN J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction and Building Materials,2014,73:113-124. doi: 10.1016/j.conbuildmat.2014.09.040
    [7] WANG B M, HAN Y, PAN B F, et al. Mechanical and Morphological Properties of Highly Dispersed Carbon Nanotubes Reinforced Cement Based Materials[J]. Journal of Wuhan University of Technology (Materials Science Edition),2013,28(01):82-87. doi: 10.1007/s11595-013-0645-1
    [8] CHAIPANICH A, NOCHAYA T, WONGKEO W, et al. Compressive strength and microstructure of carbon nanotubes-flfly ash cement composites[J]. Mater Sci Eng 2010;A527: 1063-76.
    [9] L BODNAROVA, T JAROLIM. Study the effect of carbon nanoparticles in concrete[J]. IOP Conference Series: Materials Science and Engineering, 2018, 385(1).
    [10] Ru H Z, Zhao R R. Research on Electrical Double Percolation of Carbon Black-Filled Cement-Based Composites[J]. Advanced Materials Research, 2 011, 311-313: 201-204.
    [11] ELKADY HALA, HASSAN AHMED. Assessment of High Thermal Effects on Carbon Nanotube (Cnt)- Reinforced Concrete. [J]. Scientific reports, 2018, 8(1).
    [12] MIN-JU LIM, HYO KYOUNG LEE, IL-WOO NAM, et al. Carbon nanotube/cement composites for crack monitoring of concrete structures[J]. Composite Structures,2017:180.
    [13] DING Y, HAN Z, ZHANG Y, et al. Concrete with triphasic conductive materials for self-monitoring of cracking development subjected to flexure[J]. Composite Structures,2015,138:184-191.
    [14] CHRISTOPHER Y. TUAN AND SHERIF YEHIA. Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing[J]. Materials Journal,2004,101(4):287-293.
    [15] KHALID T, ALBASHA L, QADDOUMI N, et al. Feasibility Study of Using Electrically Conductive Concrete for Electromagnetic Shielding Applications as a Substitute for Carbon-Laced Polyurethane Absorbers in Anechoic Chambers[J]. IEEE Transactions on Antennas & Propagation,2017,65(5):2428-2435.
    [16] 徐令娜, 赵庆新, 李炜, 张亚军. 碳纤维炭黑导电混凝土的接地特性研究[J]. 硅酸盐通报, 2014, 33(12):3366-3370.

    XU L N, ZHAO Q X, LI W, ZHANG Y J. Grounding Characteristics of carbon fiber Carbon black Conductive Concrete[J]. Bulletin of the Chinese Ceramic Society,2014,33(12):3366-3370(in Chinese).
    [17] PACHECO-TORGAL F, JALALI S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials[J]. Construction and Building Materials,2011,25(2):582-590. doi: 10.1016/j.conbuildmat.2010.07.009
    [18] WANG Y F, ZHAO Y, ZHAO X H, et al. Mechanical and Strain-Sensing Properties of Cement-Matrix Composite Containing Nano-Sized Carbon Black[J]. Key Engineering Materials,2019,815:203-209. doi: 10.4028/www.scientific.net/KEM.815.203
    [19] REZANIA M, PANAHANDEH M, RAZAVI M J, et al. Experimental study of the simultaneous effect of nano-silica and nano-carbon black on permeability and mechanical properties of the concrete[J]. Theoretical and Applied Fracture Mechanics,2019,104(C):102391-102391.
    [20] WANG J W, ZHANG W K, JIAO C, et al. Activated Carbon Based Supercapacitors with a Reduced Graphene Oxide Additive: Preparation and Properties[J]. Journal of Nanoscience and Nanotechnology,2020,20(7):4073-4083. doi: 10.1166/jnn.2020.17688
    [21] GNANAMUTHU R, LEE C W. Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries[J]. Materials Chemistry & Physics,2011,130(3):831-834.
    [22] HONGWEN C, HAIXIN Z, TIAN Z, et al. Nanostructured Nb2O5 cathode for high-performance lithium-ion battery with Super-P and graphene compound conductive agents[J]. Journal of Electroanalytical Chemistry,2018,827:112-119. doi: 10.1016/j.jelechem.2018.08.037
    [23] MARINARO M, MANCINI M, NOBILI F, et al. A newly designed Cu/Super-P composite for the improvement of low-temperature performances of graphite anodes for lithium-ion batteries[J]. Journal of Power Sources,2013,222(JAN.15):66-71.
    [24] H. K. KIM AND I. W. NAM AND H. K. LEE. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume[J]. Composite Structures,2014,107(Jan.):60-69.
    [25] 朱洪波, 王培铭, 李晨, 等. 多壁碳纳米管在水泥浆中的分散性[J]. 硅酸盐学报, 2012, 40(10):1431.

    ZHU H B, WANG P M, LI C, et al. Dispersion of multi-walled carbon nanotubes in cement slurries[J]. Journal of the Chinese ceramic society,2012,40(10):1431(in Chinese).
    [26] 檀付瑞, 李红波, 桂慧, 等. 超声分散对SWCNTs分离的影响[J]. 物理化学学报, 2012, 28(7):1790. doi: 10.3866/PKU.WHXB201204174

    TAN F R, LI H B, GUI H, et al. Effect of ultrasonic dispersion on the separation of SWCNTs[J]. Acta physico-chimica sinica,2012,28(7):1790(in Chinese). doi: 10.3866/PKU.WHXB201204174
    [27] JIANMIN, WU, JIANGUO, et al. Three-phase composite conductive concrete for pavement deicing[J]. Construction and Building Materials,2015,75(Jan.30):129-135.
    [28] 中国国家标准化管理委员会(标准制定单位). 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016 [S]. 北京: 中国建筑工业出版社, 2016.

    Standardization Administration of China (Standard formulation Unit). Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016 [S]. Beijing: China Architecture & Building Press , 2016. (in Chinese).
    [29] 中国国家标准化管理委员会(标准制定单位). 普通混凝土力学性能试验方法标准: GB/T 50081—2002 [S]. 北京: 中国建筑工业出版社, 2003.

    Standardization Administration of China (Standard formulation Unit). Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002 [S]. Beijing: China Architecture & Building Press , 2003 (in Chinese).
    [30] 中国国家标准化管理委员会(标准制定单位). 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009 [S]. 北京: 中国建筑工业出版社, 2009.

    Standardization Administration of China (Standard formulation Unit). Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009 [S]. Beijing: China Architecture & Building Press , 2003 (in Chinese)
    [31] NORHASRI M S M, HAMIDAH M S, FADZIL A M. Applications of using nano material in concrete: A review[J]. Construction and Building Materials,2017,133(FEB.15):91-97.
    [32] SUROVIKIN Y V, SHAITANOV A G, RESANOV I V, et al. The Properties of Nanodispersed Carbon Black Particles After Thermal Treatment[J]. Procedia Engineering,2015,113:519-524. doi: 10.1016/j.proeng.2015.07.345
    [33] 柳逸凡. 炭黑本征性能与其填充聚乙烯复合材料导电性能的研究[J]. 北京化工大学, 2016:3-5.

    LIU Y F. Study on the intrinsic properties of carbon black and its electrical conductivity of polyethylene composites[J]. Beijing University of Chemical Technology,2016:3-5(in Chinese).
    [34] A G H N, JOSÉ CARLOS LOPES RIBEIRO A, EDUARDO NERY DUARTE DE ARAÚJO B, et al. Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites - ScienceDirect[J]. Journal of Building Engineering,2020:32.
    [35] 王琴, 李时雨, 王健, 潘硕, 郭紫薇, 等. 氧化石墨烯对水泥水化进程及其主要水化产物的影响[J]. 硅酸盐学报, 2018, 46(2):163-172.

    WANG Q, LI S Y, WANG J, PAN S, GUO Z W, et al. Effect of graphene oxide on hydration process and main hydration products of cement[J]. Journal of the Chinese ceramic society,2018,46(2):163-172(in Chinese).
    [36] WANG S, MA S, CAO L, et al. Conductive Vitrimer Nanocomposites Enable Advanced and Recyclable Thermo-sensitive Materials[J]. Journal of Materials Chemistry C, 2020, 8(34).
    [37] SUN W Z, LI X, YANG Q, et al. Resistivity-temperature characteristics of conductive asphalt concrete. 2016, 31(2): 367-371.
  • 加载中
计量
  • 文章访问数:  89
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 录用日期:  2021-12-07
  • 修回日期:  2021-12-06
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回