留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导电炭黑Super-P对混凝土性能的影响

何威 李世磊 王亚伟 焦志男 李桂峰

何威, 李世磊, 王亚伟, 等. 导电炭黑Super-P对混凝土性能的影响[J]. 复合材料学报, 2023, 40(1): 383-395. doi: 10.13801/j.cnki.fhclxb.20211216.002
引用本文: 何威, 李世磊, 王亚伟, 等. 导电炭黑Super-P对混凝土性能的影响[J]. 复合材料学报, 2023, 40(1): 383-395. doi: 10.13801/j.cnki.fhclxb.20211216.002
HE Wei, LI Shilei, WANG Yawei, et al. Effect of conductive carbon black Super-P on concrete properties[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 383-395. doi: 10.13801/j.cnki.fhclxb.20211216.002
Citation: HE Wei, LI Shilei, WANG Yawei, et al. Effect of conductive carbon black Super-P on concrete properties[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 383-395. doi: 10.13801/j.cnki.fhclxb.20211216.002

导电炭黑Super-P对混凝土性能的影响

doi: 10.13801/j.cnki.fhclxb.20211216.002
基金项目: 国家自然科学基金(51578477)
详细信息
    通讯作者:

    何威,博士,教授,博士生导师,研究方向为水泥基复合材料 E-mail:hewei@ysu.edu.cn

  • 中图分类号: TB332

Effect of conductive carbon black Super-P on concrete properties

Funds: National Natural Science Foundation of China (51578477)
  • 摘要: 采用低成本和高稳定性的纳米导电炭黑Super-P (CBSP)作为水泥混凝土的添加剂。通过设置不同的水灰比和不同的CBSP掺量,研究了CBSP的加入对混凝土各方面性能的影响(即坍落度、力学性能、抗渗性能、导电性能和温敏性能)。通过SEM对混凝土微观形貌进行分析。实验结果显示,掺入纳米材料CBSP使混凝土坍落度不断降低。随着CBSP的掺入量不断增大,混凝土的力学性能先提升后降低且各龄期变化趋势相似,当CBSP的掺入量为0.75wt%时力学性能达到最大。同时混凝土的力学性能随水灰比的增加而降低。混凝土的抗渗性能随着CBSP掺量的增加而先提高后降低,且当水灰比较大时抗渗性能有所降低。当CBSP掺入量为0.75wt%~2wt%时,混凝土电阻率迅速降低。标准养护条件比室内干燥养护的混凝土电阻率低。不同水灰比混凝土之间电阻率相差较小。SEM显示了CBSP的填充孔隙和隧道导电作用。通过实验证明CBSP的加入可以改善混凝土的各项性能。

     

  • 图  1  粗细骨料级配曲线

    Figure  1.  Gradation curves of coarse and fine aggregate

    图  3  CBSP分散液的制备

    Figure  3.  Preparation of CBSP dispersion

    图  2  纳米导电炭黑Super-P (CBSP)不同倍数的SEM图像

    Figure  2.  SEM images of nano conductive carbon black Super-P (CBSP) of different multiples

    图  4  CBSP混凝土试块的制备流程图

    Figure  4.  Preparation flow chart of CBSP concrete test blocks

    图  5  各组CBSP混凝土拌合物的坍落度及其变化率

    Figure  5.  Slump and change rate of each group of CBSP concrete mixture

    图  6  CBSP与水泥颗粒混合状态

    Figure  6.  Mixing state of CBSP and cement particles

    图  7  不同水灰比CBSP混凝土抗压强度及其变化率

    Figure  7.  Compressive strength and change rate of CBSP concrete with different water cement ratios

    图  8  不同水灰比CBSP混凝土28天抗折强度及其变化率

    Figure  8.  Flexural strength and change rate of CBSP concrete with different water cement ratios at 28 days

    图  9  两种水灰比下各组CBSP混凝土的渗水高度及其变化率

    Figure  9.  Water seepage height and change rate of each group of CBSP concrete under two water-cement ratios

    图  10  二电极法测量混凝土试块电阻率示意图

    Figure  10.  Schematic diagram of measuring resistivity of concrete test block by two electrode method

    图  11  不同养护条件下两种水灰比CBSP混凝土不同龄期电阻率随CBSP掺量变化的曲线

    Figure  11.  Resistivity curves of CBSP concrete with two water-cement ratios varying with CBSP content at different ages under different curing conditions

    图  12  两种水灰比CBSP混凝土的温敏性能

    Figure  12.  Temperature-sensitive properties of CBSP concrete with two water-cement ratios

    图  13  不同CBSP掺量的W/C=0.53混凝土SEM图像

    Figure  13.  SEM images of concrete W/C=0.53 with different CBSP contents

    C-S-H—Calcium silicate hydrate

    表  1  P∙O 42.5水泥的化学成分组成

    Table  1.   Chemical composition of P∙O 42.5 cement wt%

    SiO2Al2O3Fe2O3CaOMgOSO3Na2O (eq)f-CaOCl
    21.477.173.1160.042.902.770.110.570.024
    Notes: eq—Equipoise; f-CaO—Free calcium oxide.
    下载: 导出CSV

    表  2  P∙O 42.5水泥的物理性能检测结果

    Table  2.   Physical performance test results of P∙O 42.5 cement

    Density/
    (g·cm−3)
    Degree of powderSetting timeStabilityFlexural
    strength/MPa
    Compressive
    strength/MPa
    Specific surface
    area/(m2·kg−1)
    80 μm/%Normal
    consistency/%
    Initial
    set/min
    Final
    set/min
    Ray type
    method/mm
    3 days28 days3 days28 days
    3.063510.2828.01702350.505.68.929.057.3
    下载: 导出CSV

    表  3  砂的筛分析结果

    Table  3.   Sieve analysis results of sand

    Sieve pore/mmProportion/wt%Cumulative proportion/wt%
    9.50
    4.750.00.0
    2.3612.612.6
    1.1813.426.0
    0.6031.057.0
    0.3030.287.2
    0.158.295.4
    下载: 导出CSV

    表  4  纳米导电炭黑Super-P (CBSP)的性能参数

    Table  4.   Performance parameters of conductive carbon black Super-P (CBSP)

    TypeMean grain
    size/nm
    Specific
    area/(m2·g−1)
    DBP
    value
    Carbon
    content/wt%
    Volatile con-tent/vol%Ash
    content/wt%
    Density/
    (kg·m−3)
    pHSpecific
    resistance/(Ω·cm)
    Super-P4062290≥99.5≤0.15≤0.0512580.15-0.25
    Note: DBP—Carbon black oil absorption.
    下载: 导出CSV

    表  5  CBSP混凝土试件编号

    Table  5.   Serial numbers of CBSP concretes

    Serial numberAbbreviationCement/(kg·m−3)Sand/(kg·m−3)Stone/(kg·m−3)Water/(kg·m−3)W/CCBSP/wt%
    0.00wt%CBSP/C-0.53C038768311152050.530.00
    0.25wt%CBSP/C-0.53C138768311152050.530.25
    0.50wt%CBSP/C-0.53C238768311152050.530.50
    0.75wt%CBSP/C-0.53C338768311152050.530.75
    1.00wt%CBSP/C-0.53C438768311152050.531.00
    2.00wt%CBSP/C-0.53C538768311152050.532.00
    3.00wt%CBSP/C-0.53C638768311152050.533.00
    0.00wt%CBSP/C-0.63B038768311152440.630.00
    0.25wt%CBSP/C-0.63B138768311152440.630.25
    0.50wt%CBSP/C-0.63B238768311152440.630.50
    0.75wt%CBSP/C-0.63B338768311152440.630.75
    1.00wt%CBSP/C-0.63B438768311152440.631.00
    2.00wt%CBSP/C-0.63B538768311152440.632.00
    3.00wt%CBSP/C-0.63B638768311152440.633.00
    Notes: 0.00wt%CBSP/C-0.53—Concrete with water cement ratio of 0.53 and CBSP content of 0.00wt%; W/C—Water cement mass ratio.
    下载: 导出CSV

    表  6  W/C=0.53 CBSP混凝土温敏性曲线拟合参数

    Table  6.   Fitting parameters of CBSP concrete temperature sensitivity curve with W/C=0.53

    Parameter A B R2
    0.00wt%CBSP/C-0.53 −0.55081 3 377.85960 0.99597
    0.25wt%CBSP/C-0.53 −0.81745 3 442.25644 0.99120
    0.50wt%CBSP/C-0.53 −101.31949 313 277.24880 0.99483
    0.75wt%CBSP/C-0.53 1.17462 2 707.85747 0.98732
    1.00wt%CBSP/C-0.53 0.03326 3 019.87428 0.99705
    2.00wt%CBSP/C-0.53 7.01614 204.24485 0.95776
    3.00wt%CBSP/C-0.53 6.63551 109.41760 0.97458
    Notes: A,B—Fit the curve parameters; R—Coefficient of determination.
    下载: 导出CSV

    表  7  W/C=0.63 CBSP混凝土温敏性曲线拟合参数

    Table  7.   Fitting parameters of CBSP concrete temperature sensitivity curve with W/C=0.63

    ParameterABR2
    0.00wt%CBSP/B-0.63 1.08724 2 862.18204 0.98602
    0.25wt%CBSP/B-0.63 0.87482 2 926.42100 0.99256
    0.50wt%CBSP/B-0.63 1.33534 2 759.96766 0.99416
    0.75wt%CBSP/B-0.63 1.53696 2 665.37278 0.99559
    1.00wt%CBSP/B-0.63 1.51155 2 607.06713 0.99333
    2.00wt%CBSP/B-0.63 6.08571 600.09686 0.98262
    3.00wt%CBSP/B-0.63 6.43309 267.29325 0.98163
    下载: 导出CSV
  • [1] DAHLAN A S. Impact of nanotechnology on high performance cement and concrete[J]. Journal of Molecular Structure,2020,1223:128896. doi: 10.1016/j.molstruc.2020.128896
    [2] LIU D J, CHEN M J, XUE L, et al. The effect of the carbon fiber on concrete compressive strength[J]. Advanced Materials Research,2018,1145:106-111. doi: 10.4028/www.scientific.net/AMR.1145.106
    [3] JANG S H, HOCHSTEIN D P, KAWASHIMA S, et al. Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture[J]. Cement and Concrete Composites,2017,77:49-59. doi: 10.1016/j.cemconcomp.2016.12.003
    [4] DIMOV D, AMIT I, GORRIE O, et al. Ultrahigh performance nanoengineered graphene-concrete composites for multifunctional applications[J]. Advanced Functional Materials,2018,28(23):1705183. doi: 10.1002/adfm.201705183
    [5] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement and Concrete Composites,2015,58:140-147. doi: 10.1016/j.cemconcomp.2015.02.001
    [6] CHUAH S, ZHU P, SANJAYAN J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction and Building Materials,2014,73:113-124. doi: 10.1016/j.conbuildmat.2014.09.040
    [7] WANG B M, HAN Y, PAN B F, et al. Mechanical and morphological properties of highly dispersed carbon nanotubes reinforced cement based materials[J]. Journal of Wuhan University of Technology (Materials Science Edition),2013,28(1):82-87. doi: 10.1007/s11595-013-0645-1
    [8] CHAIPANICH A, NOCHAYA T, WONGKEO W, et al. Compressive strength and microstructure of carbon nanotubes-fly ash cement composites[J]. Materials Science and Engineering: A,2010,527(4-5):1063-1067. doi: 10.1016/j.msea.2009.09.039
    [9] BODNAROVA L, JAROLIM T. Study the effect of carbon nanoparticles in concrete[C]//International Conference on Construmat. Bristol: Institute of Physics, 2018: 13-15.
    [10] RU H Z, ZHAO R R. Research on electrical double percolation of carbon black-filled cement-based composites[J]. Advanced Materials Research,2011,311-313:201-204. doi: 10.4028/www.scientific.net/AMR.311-313.201
    [11] ELKADY H, HASSAN A. Assessment of high thermal effects on carbon nanotube (CNT)-reinforced concrete[J]. Scientific Reports,2018,8:11243. doi: 10.1038/s41598-018-29663-5
    [12] LIM M J, LEE H K, NAM I W, et al. Carbon nanotube/cement composites for crack monitoring of concrete structures[J]. Composite Structures,2017,180:741-750. doi: 10.1016/j.compstruct.2017.08.042
    [13] DING Y, HAN Z, ZHANG Y, et al. Concrete with triphasic conductive materials for self-monitoring of cracking development subjected to flexure[J]. Composite Structures,2015,138:184-191. doi: 10.1016/j.compstruct.2015.11.051
    [14] TUAN C Y, YEHIA S. Evaluation of electrically conductive concrete containing carbon products for deicing[J]. Materials Journal,2004,101(4):287-293.
    [15] KHALID T, ALBASHA L, QADDOUMI N, et al. Feasibility study of using electrically conductive concrete for electromagnetic shielding applications as a substitute for carbon-laced polyurethane absorbers in anechoic chambers[J]. IEEE Transactions on Antennas & Propagation,2017,65(5):2428-2435.
    [16] 徐令娜, 赵庆新, 李炜, 等. 碳纤维炭黑导电混凝土的接地特性研究[J]. 硅酸盐通报, 2014, 33(12):3366-3370.

    XU Lingna, ZHAO Qingxin, LI Wei, et al. Grounding characteristics of carbon fiber carbon black conductive concrete[J]. Bulletin of the Chinese Ceramic Society,2014,33(12):3366-3370(in Chinese).
    [17] PACHECO-TORGAL F, JALALI S. Nanotechnology: Advantages and drawbacks in the field of construction and building materials[J]. Construction and Building Materials,2011,25(2):582-590. doi: 10.1016/j.conbuildmat.2010.07.009
    [18] WANG Y F, ZHAO Y, ZHAO X H, et al. Mechanical and strain-sensing properties of cement-matrix composite containing nano-sized carbon black[J]. Key Engineering Materials,2019,815:203-209. doi: 10.4028/www.scientific.net/KEM.815.203
    [19] REZANIA M, PANAHANDEH M, RAZAVI M J, et al. Experimental study of the simultaneous effect of nano-silica and nano-carbon black on permeability and mechanical properties of the concrete[J]. Theoretical and Applied Fracture Mechanics,2019,104:102391. doi: 10.1016/j.tafmec.2019.102391
    [20] WANG J W, ZHANG W K, JIAO C, et al. Activated carbon based supercapacitors with a reduced graphene oxide additive: Preparation and properties[J]. Journal of Nanoscience and Nanotechnology,2020,20(7):4073-4083. doi: 10.1166/jnn.2020.17688
    [21] GNANAMUTHU R, LEE C W. Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries[J]. Materials Chemistry & Physics,2011,130(3):831-834.
    [22] HONGWEN C, HAIXIN Z, TIAN Z, et al. Nanostructured Nb2O5 cathode for high-performance lithium-ion battery with Super-P and graphene compound conductive agents[J]. Journal of Electroanalytical Chemistry,2018,827:112-119. doi: 10.1016/j.jelechem.2018.08.037
    [23] MARINARO M, MANCINI M, NOBILI F, et al. A newly designed Cu/Super-P composite for the improvement of low-temperature performances of graphite anodes for lithium-ion batteries[J]. Journal of Power Sources,2013,222:66-71. doi: 10.1016/j.jpowsour.2012.08.065
    [24] KIM H K, NAM I W, LEE H K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume[J]. Composite Structures,2014,107:60-69. doi: 10.1016/j.compstruct.2013.07.042
    [25] 朱洪波, 王培铭, 李晨, 等. 多壁碳纳米管在水泥浆中的分散性[J]. 硅酸盐学报, 2012, 40(10):1431-1436. doi: 10.14062/j.issn.0454-5648.2012.10.021

    ZHU Hongbo, WANG Peiming, LI Chen, et al. Dispersion of multi-walled carbon nanotubes in cement slurries[J]. Journal of the Chinese Ceramic Society,2012,40(10):1431-1436(in Chinese). doi: 10.14062/j.issn.0454-5648.2012.10.021
    [26] 檀付瑞, 李红波, 桂慧, 等. 超声分散对单壁碳纳米管分离的影响[J]. 物理化学学报, 2012, 28(7):1790-1796. doi: 10.3866/PKU.WHXB201204174

    TAN Furui, LI Hongbo, GUI Hui, et al. Effect of ultrasonic dispersion on the separation of SWCNTs[J]. Acta Physico-Chimica Sinica,2012,28(7):1790-1796(in Chinese). doi: 10.3866/PKU.WHXB201204174
    [27] WU J M, LIU J G, YANG F. Three-phase composite conductive concrete for pavement deicing[J]. Construction and Building Materials,2015,75:129-135. doi: 10.1016/j.conbuildmat.2014.11.004
    [28] 中国国家标准化管理委员会. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Standardization Administration of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture & Building Press , 2016(in Chinese).
    [29] 中国国家标准化管理委员会. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Standardization Administration of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press , 2002(in Chinese).
    [30] 中国国家标准化管理委员会. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Standardization Administration of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [31] NORHASRI M S M, HAMIDAH M S, FADZIL A M. Applications of using nano material in concrete: A review[J]. Construction and Building Materials,2017,133:91-97. doi: 10.1016/j.conbuildmat.2016.12.005
    [32] SUROVIKIN Y V, SHAITANOV A G, RESANOV I V, et al. The properties of nanodispersed carbon black particles after thermal treatment[J]. Procedia Engineering,2015,113:519-524. doi: 10.1016/j.proeng.2015.07.345
    [33] 柳逸凡. 炭黑本征性能与其填充聚乙烯复合材料导电性能的研究[D]. 北京: 北京化工大学, 2016.

    LIU Yifan. Study on the intrinsic properties of carbon black and its electrical conductivity of polyethylene composites[D]. Beijing: Beijing University of Chemical Technology, 2016(in Chinese).
    [34] NALON G H, RIBEIRO J C L, DE ARAÚJO E N D, et al. Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites[J]. Journal of Building Engineering,2020,32:101724. doi: 10.1016/j.jobe.2020.101724
    [35] 王琴, 李时雨, 王健, 等. 氧化石墨烯对水泥水化进程及其主要水化产物的影响[J]. 硅酸盐学报, 2018, 46(2):163-172. doi: 10.14062/j.issn.0454-5648.2018.02.10

    WANG Qin, LI Shiyu, WANG Jian, et al. Effect of graphene oxide on hydration process and main hydration products of cement[J]. Journal of the Chinese Ceramic Society,2018,46(2):163-172(in Chinese). doi: 10.14062/j.issn.0454-5648.2018.02.10
    [36] WANG S, MA S, CAO L, et al. Conductive vitrimer nanocomposites enable advanced and recyclable thermo-sensitive materials[J]. Journal of Materials Chemistry C,2020,8(34):11681-11686. doi: 10.1039/D0TC02821E
    [37] SUN W Z, LI X, YANG Q, et al. Resistivity-temperature characteristics of conductive asphalt concrete[J]. Journal of Wuhan University of Technology (Materials Science),2016,31(2):367-371. doi: 10.1007/s11595-016-1377-9
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  460
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2021-12-06
  • 录用日期:  2021-12-07
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回