留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同碳源包覆高电压LiNi0.5Mn1.5O4正极材料的制备及其电化学性能

林晓燕 孔志浩 刘海志 李艳 王桢 温广武

林晓燕, 孔志浩, 刘海志, 等. 不同碳源包覆高电压LiNi0.5Mn1.5O4正极材料的制备及其电化学性能[J]. 复合材料学报, 2022, 39(10): 1-10 doi: 10.13801/j.cnki.fhclxb.20211108.002
引用本文: 林晓燕, 孔志浩, 刘海志, 等. 不同碳源包覆高电压LiNi0.5Mn1.5O4正极材料的制备及其电化学性能[J]. 复合材料学报, 2022, 39(10): 1-10 doi: 10.13801/j.cnki.fhclxb.20211108.002
Xiaoyan LIN, Zhihao KONG, Haizhi LIU, Yan LI, Zhen WANG, Guangwu WEN. Preparation and electrochemical performance of high voltage LiNi0.5Mn1.5O4 cathode materials coated with different carbon sources[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20211108.002
Citation: Xiaoyan LIN, Zhihao KONG, Haizhi LIU, Yan LI, Zhen WANG, Guangwu WEN. Preparation and electrochemical performance of high voltage LiNi0.5Mn1.5O4 cathode materials coated with different carbon sources[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 1-10. doi: 10.13801/j.cnki.fhclxb.20211108.002

不同碳源包覆高电压LiNi0.5Mn1.5O4正极材料的制备及其电化学性能

doi: 10.13801/j.cnki.fhclxb.20211108.002
详细信息
    通讯作者:

    温广武,博士,教授,博士生导师,研究方向为新能源材料、特种陶瓷材料、碳陶材料和吸波材料 E-mail: wengw@sdut.edu.cn

  • 中图分类号: TM912

Preparation and electrochemical performance of high voltage LiNi0.5Mn1.5O4 cathode materials coated with different carbon sources

  • 摘要: LiNi0.5Mn1.5O4正极材料由于其高电压、无钴和高能量密度优势而受到关注,但高电压下易受电解液腐蚀,循环稳定性差限制了其进一步应用。本研究采用低温自蔓延法制备出高电压LiNi0.5Mn1.5O4材料,再使用不同糖类作为碳源进行包覆改性研究。结果表明,在400℃/Air条件下,以壳聚糖为碳源制备的LiNi0.5Mn1.5O4复合材料性能明显改善,在148 mA·h/g下循环400次后放电比容量仍有113.3 mA·h/g,容量保持率为91.07%。这主要归功于材料表面裂解的碳层提高了材料的导电性,缓解了电解液的侵蚀,降低了电极反应极化,提高了锂离子扩散速率。本研究利用廉价的糖类作为碳源,合成工艺简单,为镍锰酸锂的应用提供了新的思路。

     

  • 图  1  (a) 不同温度和气氛下碳包覆LiNi0.5Mn1.5O4 (LNMO)的XRD图;((b)、(c))原始材料LNMO及K400A-LNMO的SEM图像;(d) K400N-LNMO及K800N-LNMO的首圈充放电曲线;(e) LNMO及K400A-LNMO的首圈充放电曲线;(f)倍率曲线

    Figure  1.  (a) XRD patterns of carbon coating LiNi0.5Mn1.5O4 (LNMO) by different conditions; ((b), (c)) SEM images of the original material LNMO and K400A-LNMO; (d) The first charge-discharge curves of K400N-LNMO and K800N-LNMO; (e) The first charge-discharge curves of LNMO and K400A-LNMO; (f) The rate cycling capability of carbon coating LNMO by different conditions

    A—Air; N—Nitrogen; K400— 400℃; K800—800℃; 1C—148 mA·h/g

    图  2  不同碳源包覆镍锰酸锂的XRD图

    Figure  2.  XRD patterns of LNMO coating by different carbon sources

    Z—Saccharose; P—Glucose; Y—Corn dextrin; S—Soluble starch; M—Potato starch; K—Chitosan

    图  3  不同碳源包覆镍锰酸锂的SEM图像:(a) K-LNMO;(b) M-LNMO;(c) S-LNMO;(d) Y-LNMO;(e) P-LNMO;(f) Z-LNMO

    Figure  3.  SEM images of LNMO coating by different carbon sources: (a) K-LNMO; (b) M-LNMO; (c) S-LNMO; (d) Y-LNMO; (e) P-LNMO; (f) Z-LNMO

    图  4  (a) 不同碳源包覆镍锰酸锂的电导率;(b) LNMO和K-LNMO的热重曲线

    Figure  4.  (a) Conductivity of LNMO coating by different carbon sources; (b) TG curves of LNMO and K-LNMO

    图  5  不同碳源包覆镍锰酸锂的电化学性能图: (a)首次充放电曲线;(b)倍率曲线;(c)循环曲线;(d) LNMO和K-LNMO的长循环曲线

    Figure  5.  Electrochemical performance of LNMO coating by different carbon sources: (a) The first charge-discharge curves; (b) The rate cycling capability; (c) The cycling performance; (d) The long cycling performance of LNMO and K-LNMO

    图  6  (a)循环前后LNMO和K-LNMO的阻抗图;(b)阻抗的ω−1/2Z'关系;((c)、(d)) LNMO及K-LNMO未充电电池在0、10、20、30、40℃下的阻抗;(e)等效电路图;(f) LNMO及K-LNMO的活化能拟合曲线

    Figure  6.  (a) EIS test of LNMO and K-LNMO before and after cycling; (b) The relationship between ω−1/2 and Z' of impedance; ((c), (d)) EIS test of LNMO and K-LNMO at 0, 10, 20, 30, 40℃ before cycling; (e) Fitting circuit; (f) Activation energy fitting curves of LNMO and K-LNMO

    Rct—Charge transfer resistance; Rs—Resistance of solution between working electrode and opposite electrode; Zw—Weber impedance; CPE—Phase angle element; Z'—Real part of impedance; Z"—Imaginary part of impedance; Ea—Activation energy; T—Temperature; ω—Angular frequency

    图  7  ((a)、(b)) LNMO及K-LNMO电化学循环前的TEM图像; ((c)、(d))电化学循环后的TEM图像

    Figure  7.  ((a), (b)) TEM images of LNMO and K-LNMO before cycling; ((c), (d)) TEM images of LNMO and K-LNMO after cycling

    图  8  (a)壳聚糖作碳源对镍锰酸锂进行碳包覆的机制图;(b)碳层作为导电层及保护层在电化学循环过程中提高镍锰酸锂电化学性能的机制图

    Figure  8.  (a) Mechanism diagram of carbon coating by chitosan of LNMO; (b) Schematic illustration of the carbon layer acts as a conductive and protective layer to improve the electrochemical performance of LNMO during cycling

    表  1  电化学循环前后LNMO及K-LNMO的RctDLi+

    Table  1.   Rct and DLi+ of LNMO and K-LNMO before cycling and after cycling

    SamplesRctDLi+ /(cm2·S−1)SamplesRctDLi+ /(cm2·S−1)
    LNMO-before133.61.32×10−15K-LNMO-before285.51.45×10−15
    LNMO-after1023.17.23×10−16K-LNMO-after802.63.23×10−15
    Notes: Rct—Charge transfer resistance; DLi+—Lithium ion diffusion rate.
    下载: 导出CSV
  • [1] TARASCON J, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [2] WRONSKI Z. Materials for rechargeable batteries and clean hydrogen energy sources[J]. International Materials Reviews,2001,46(1):1-49. doi: 10.1179/095066001101528394
    [3] PISTOIA G, ANTONINI A, ROSATI R, et al. Storage characteristics of cathodes for Li-ion batteries[J]. Electrochimica Acta,1996,41(17):2683-2689. doi: 10.1016/0013-4686(96)00122-3
    [4] WANG Y, CAO G. Developments in nanostructured cathode materials for high performance lithium ion batteries[J]. Advanced Materials,2008,20(12):2251-2269. doi: 10.1002/adma.200702242
    [5] SCROSATI B, GARCHE J. Lithium batteries: Status, prospectsand future[J]. Journal of Power Source,2010,195(9):2419-2430. doi: 10.1016/j.jpowsour.2009.11.048
    [6] WANG L, LIANG G C, OU X Q, et al. Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction[J]. Journal of Power Sources,2009,189(1):423-428. doi: 10.1016/j.jpowsour.2008.07.032
    [7] OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters,2001,30(7):642-643. doi: 10.1246/cl.2001.642
    [8] ANDERSSON A S, THOMAS J O. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources,2001,97-98:498-502. doi: 10.1016/S0378-7753(01)00633-4
    [9] SRINIVASAN V, NEWMAN J. Discharge model for the lithium iron-phosphate electrode[J]. Journal of the Electrochemical Society,2004,151(10):A1517-A1529. doi: 10.1149/1.1785012
    [10] 饶帆, 陈爱华, 赵永彬. 锂离子电池正极材料LiNi0.8Co0.15Al0.05O2的制备与性能[J]. 复合材料学报, 2018, 35(4):946-956.

    RAO Fan, CHEN Aihua, ZHAO Yongbin. Preparation and performance of LiNi0.8Co0.15Al0.05O2 cathode material of lithium ion battery[J]. Acta Materiae Compositae Sinica,2018,35(4):946-956(in Chinese).
    [11] XU X L, DENG S X, WANG H, et al. Research progress in improving the cycling stability of high-voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery[J]. Nano-Micro Letters,2017,9(22):97-115.
    [12] LI S Y, GENG S, ZHAO J C, et al. Synthesis of LiNi0.5Mn1.5O4 nano/microspheres with adjustable hollow structures for lithium-ion battery[J]. Ionics,2018,24(3):681-688. doi: 10.1007/s11581-017-2249-9
    [13] MOKHTAR N, IDRIS N, DIN M. Molten salt synthesis of disordered spinel LixNi0.5Mn1.5O4 with improved electrochemical performance for Li-ion batteries[J]. International Journal of Electrochemical Science,2018,13:10113-10126. doi: 10.20964/2018.11.51
    [14] XUE Y, ZHENG L L, WANG J, et al. Improving electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode by cobalt surface modification[J]. ACS Applied Energy Materials,2019,2(4):2982-2989. doi: 10.1021/acsaem.9b00564
    [15] WANG J, NIE P, XU G Y, et al. High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries[J]. Advanced Functional Materials,2018,28(4):1704808.1-1704808.9. doi: 10.1002/adfm.201704808
    [16] LAN L F, LI S, LI J, et al. Enhancement of the electrochemical performance of the spinel structure LiNi0.5-xGaxMn1.5O4 cathode material by Ga doping[J]. Nanoscale Research Letters,2018,13(1):251-261. doi: 10.1186/s11671-018-2666-3
    [17] LIU D L, BAI Y, ZHAO S, et al. Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating[J]. Journal of Power Sources,2012,219:333-338. doi: 10.1016/j.jpowsour.2012.07.058
    [18] SHU Y, XIE Y, YAN W C, et al. Tuning the ratio of Al2O3 to LiAlO2 in the composite coating layer for high performance LiNi0.5Mn1.5O4 materials[J]. Ceramics International,2020,46(10):14840-14846. doi: 10.1016/j.ceramint.2020.03.009
    [19] KIM J, KIM D, OH D, et al. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries[J]. Journal of Power Sources,2015,274:1254-1262. doi: 10.1016/j.jpowsour.2014.10.207
    [20] HUANG X K, CHEN K, LIU Y Z. Enhancement of LiNi0.5Mn1.5O4 cathode materials through interfacial modification of amorphous Al2O3 in lithium ion batteries[J]. Journal of the Electrochemical Society,2019,166(3):A5081-A5089. doi: 10.1149/2.0141903jes
    [21] TAO S, KONG F J, WU C Q, et al. Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries[J]. Journal of Alloys and Compounds,2017,705:413-419. doi: 10.1016/j.jallcom.2017.02.139
    [22] MU J P, ZHANG L H, HE R, et al. Enhancing the electrochemical performance of LiNi0.5Mn1.5O4 cathode material by a conductive LaCoO3 coating[J]. Journal of Alloys and Compounds,2021,865(1):158629-158642. doi: 10.1016/j.jallcom.2021.158629
    [23] JANG W H, KIM M C, KIM S H, et al. Understanding the exceptional elevated temperature performance of high voltage LiNi0.5Mn1.5O4 cathodes by LiFePO4 modification[J]. Electrochimica Acta,2014,137:404-410. doi: 10.1016/j.electacta.2014.06.054
    [24] JAYAWARDANA M D C, LUCHT B L. Comparison of failure mechanisms in lithium manganese oxide and lithium nickel manganese oxide spinel cathodes[J]. Electrochemical Society Meeting Abstracts,2021,MA2021-01(2):129. doi: 10.1149/MA2021-012129mtgabs
    [25] WANG L, CHEN D, WANG J F, et al. Synthesis of LiNi0.5Mn1.5O4 cathode material with improved electrochemical performances through a modified solid-state method[J]. Powder Technology,2016,292:203-209. doi: 10.1016/j.powtec.2016.02.002
    [26] GAO C, LIU H P, HAO J M, et al. Enhanced rate performance of nanosized RGO- LiNi0.5Mn1.5O4 composites as cathode material by a solid-state assembly method[J]. Ionics,2018,25:71-79.
    [27] FAN Y K, WANG J M, YE X B, et al. Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method[J]. Materials Chemistry & Physics,2007,103(1):19-23. doi: 10.1016/j.matchemphys.2006.10.006
    [28] MA Y, WANG L S, ZUO X X, et al. Co-precipitation spray-drying synthesis and electrochemical performance of stabilized LiNi0.5Mn1.5O4 cathode materials[J]. Journal of Solid State Electrochemistry,2018,22:1963-1969. doi: 10.1007/s10008-018-3884-4
    [29] 闫红芹, 凤权, 彭祥, 等. 壳聚糖纤维的热稳定性和燃烧性能[J]. 纺织学报, 2015, 36(10):12-16. doi: 10.13475/j.fzxb.20141004905

    YAN Hongqin, FENG Quan, PENG Xiang, et al. Thermal stability and combustion performance of chitosan fibers[J]. Journal of Textile Research,2015,36(10):12-16(in Chinese). doi: 10.13475/j.fzxb.20141004905
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  111
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 录用日期:  2021-10-31
  • 修回日期:  2021-10-20
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2022-10-15

目录

    /

    返回文章
    返回