留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能

杨来侠 刘波 刘腾飞 高扬 田小永

杨来侠, 刘波, 刘腾飞, 等. 3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能[J]. 复合材料学报, 2023, 40(10): 5654-5665. doi: 10.13801/j.cnki.fhclxb.20230213.003
引用本文: 杨来侠, 刘波, 刘腾飞, 等. 3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能[J]. 复合材料学报, 2023, 40(10): 5654-5665. doi: 10.13801/j.cnki.fhclxb.20230213.003
YANG Laixia, LIU Bo, LIU Tengfei, et al. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5654-5665. doi: 10.13801/j.cnki.fhclxb.20230213.003
Citation: YANG Laixia, LIU Bo, LIU Tengfei, et al. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5654-5665. doi: 10.13801/j.cnki.fhclxb.20230213.003

3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能

doi: 10.13801/j.cnki.fhclxb.20230213.003
基金项目: 基础加强项目(2017-JCJQ-ZD-035);国家自然科学基金(52205413);中国博士后科学基金(2022M712534)
详细信息
    通讯作者:

    杨来侠,博士,教授,博士生导师,研究方向为快速成形与模具制造 E-mail: 1833680962@qq.com

    田小永,博士,教授,博士生导师,研究方向为多材料、复合材料3D打印技术及其应用 E-mail: leoxyt@xjtu.edu.cn

  • 中图分类号: TB332

Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments

Funds: Foundation Strengthening Project (2017-JCJQ-ZD-035); National Natural Science Foundation of China (52205413); China Postdoctoral Science Foundation (2022M712534)
  • 摘要: 为降低3D打印连续纤维增强聚合物(CFRP)复合材料的孔隙率,提高树脂对纤维的浸渍程度,需要开展熔融浸渍连续纤维预浸丝制备与3D打印性能研究,开发纤维预浸渍一体化设备。本文以玻璃纤维(GF)、碳纤维(CF)作为增强体,聚碳酸酯(PC)为基体,开发熔融浸渍预浸丝制备工艺,研究浸渍工艺对预浸丝性能的影响。以预浸丝为原料,研究3D打印成形工艺参数对纤维含量、孔隙率及力学性能的影响规律。结果表明:连续玻璃纤维增强聚碳酸酯(CGF/PC)预浸丝的拉伸强度为627.8 MPa,当打印温度为260℃,分层厚度为0.10 mm,扫描间距为1.0 mm时,连续碳纤维增强聚碳酸酯(CCF/PC)复合材料纤维含量为28.66vol%,拉伸强度和模量分别644.8 MPa和85.6 GPa,优化后孔隙率为3.87%。当打印温度为280℃,分层厚度为0.14 mm,扫描间距为1.2 mm时,CGF/PC复合材料纤维含量为51.35vol%,拉伸强度和模量分别为381.4 MPa和23.6 GPa,优化后孔隙率为4.41%。

     

  • 图  1  (a) 纤维预浸丝熔融浸渍原理;(b) 熔融浸渍设备实物图

    Figure  1.  (a) Principle of melt impregnation of fiber prepreg yarn; (b) Physical diagram of melt impregnation equipment

    F—Fiber; R—Radius; P—Pressure; GF—Glass fiber; PC—Polycarbonate

    图  2  拉伸试样:(a) CCF/PC;(b) CGF/PC

    Figure  2.  Tensile specimens: (a) CCF/PC; (b) CGF/PC

    图  3  不同浸渍温度对CGF/PC预浸丝拉伸性能影响

    Figure  3.  Effect of different impregnation temperatures on the tensile properties of CGF/PC prepreg wires

    图  4  不同牵引速度对CGF/PC预浸丝拉伸性能影响

    Figure  4.  Effect of different traction speeds on the tensile properties of CGF/PC prepreg wires

    图  5  不同牵引速度的CGF/PC预浸丝微观形貌:(a) 100 mm/min;(b) 300 mm/min;(c) 800 mm/min

    Figure  5.  Microscopic morphology of CGF/PC prepreg wire with different traction speeds: (a) 100 mm/min; (b) 300 mm/min; (c) 800 mm/min

    图  6  不同进给速率对CGF/PC预浸丝拉伸性能影响

    Figure  6.  Effect of different feed rates on the tensile properties of CGF/PC prepreg wires

    图  7  分层厚度对CCF/PC (a)和CGF/PC (b)复合材料拉伸性能影响

    Figure  7.  Effect of layering thickness on tensile properties of CCF/PC (a) and CGF/PC (b) composite

    图  8  CCF/PC复合材料纤维线间结合及搭接示意图:(a) 扫描间距0.8 mm;(b) 扫描间距1.2 mm

    Figure  8.  Schematic diagram of CCF/PC the bond and lap between fiber threads: (a) Scan spacing 0.8 mm; (b) Scan spacing 1.2 mm

    图  9  扫描间距对CCF/PC (a)和CGF/PC (b)复合材料拉伸性能影响

    Figure  9.  Effect of scan spacing on tensile properties of CCF/PC (a) and CGF/PC (b) composites

    图  10  打印温度对CCF/PC (a)和CGF/PC (b)复合材料拉伸性能影响

    Figure  10.  Effect of printing temperature on tensile properties of CCF/PC (a) and CGF/PC (b) composites

    图  11  CCF/PC复合材料内部孔隙结构:(a) 分层厚度0.10 mm;(b) 分层厚度0.16 mm;(c) 扫描间距0.8 mm;(d) 扫描间距1.2 mm;CGF/PC复合材料内部孔隙结构扫描间距:(e) 分层厚度0.14 mm;(f) 分层厚度0.20 mm;(g) 扫描间距1.0 mm;(h) 扫描间距1.4 mm

    Figure  11.  Internal pore structure of CCF/PC composites: (a) Layered thickness 0.10 mm; (b) Layered thickness 0.16 mm; (c) Scan spacing 0.8 mm; (d) Scan spacing 1.4 mm; Internal pore structure of CGF/PC composites scan spacing: (e) Layered thickness 0.14 mm; (f) Layered thickness 0.20 mm; (g) Scan spacing 1.0 mm; (h) Scan spacing 1.4 mm

    图  12  CCF/PC微观形貌:(a) 扫描间距0.8 mm;(b) 扫描间距1.0 mm;(c) 扫描间距1.2 mm;CGF/PC复合材料微观形貌:(d) 扫描间距1.0 mm;(e) 扫描间距1.2 mm;(f) 扫描间距1.4 mm

    Figure  12.  CCF/PC microstructure: (a) Scan spacing 0.8 mm; (b) Scan spacing 1.0 mm; (c) Scan spacing 1.2 mm; CGF/PC composite microstructure: (d) Scan spacing 1.0 mm; (e) Scan spacing 1.2 mm; (f) Scan spacing 1.4 mm

    图  13  CCF/PC复合材料断面微观形貌:(a) 分层厚度0.10 mm;(b) 分层厚度0.16 mm;(c) 扫描间距0.8 mm;(d) 扫描间距1.2 mm

    Figure  13.  Microscopic morphologies of CCF/PC composite cross-section: (a) Layered thickness 0.10 mm; (b) Layered thickness 0.16 mm; (c) Scan spacing 0.8 mm; (d) Scan spacing 1.2 mm

    图  14  CGF/PC复合材料断面微观形貌:(a) 分层厚度0.14 mm;(b) 分层厚度0.20 mm;(c) 扫描间距1.0 mm;(d) 扫描间距1.4 mm

    Figure  14.  Microscopic morphologies of CGF/PC composite section: (a) Delamination thickness 0.14 mm; (b) Delamination thickness 0.20 mm; (c) Scan spacing1.0 mm; (d) Scan spacing 1.4 mm

    表  1  连续碳纤维增强聚碳酸酯(CCF/PC)预浸丝的制备工艺参数

    Table  1.   Preparation process parameters of continuous carbon fiber reinforced polycarbonate (CCF/PC) prepreg

    Main process parametersRange of values
    Resin feed rate (E)/(r∙min−1)4.0
    Traction speed (U)/(mm∙min−1)500
    Impregnation temperature (TI)/℃260
    下载: 导出CSV

    表  2  连续玻璃纤维(CGF)预浸丝的制备工艺参数

    Table  2.   Preparation process parameters of continuous glass fiber (CGF) prepreg

    Main process parametersRange of valuesOther process parameters
    E/(r∙min−1)2.0, 3.0, 4.0, 5.0U=300, TI=270
    U/(mm∙min−1)100, 300, 500, 700, 800E=3.0, TI=270
    TI/℃240, 250, 270, 290E=3.0, U=300
    下载: 导出CSV

    表  3  CCF/PC成形工艺参数

    Table  3.   CCF/PC molding process parameters

    Main process parametersRange of valuesOther process parameters
    Layering thickness (H)/mm0.10, 0.13, 0.16S=1.0, TP=260
    Scan spacing (S)/mm0.8, 1.0, 1.2H=0.13, TP=260
    Print temperature (TP)/℃240, 260, 280H=0.13, S=1.0
    下载: 导出CSV

    表  4  CGF/PC成形工艺参数

    Table  4.   CGF/PC molding process parameters

    Main process parametersRange of valuesOther process parameters
    H/mm0.14, 0.17, 0.20S=1.2, TP=280
    S/mm1.0, 1.2, 1.4H=0.17, TP=280
    TP/℃270, 280, 290H=0.17, S=1.2
    下载: 导出CSV

    表  5  不同温度下PC熔融指数(MFR)

    Table  5.   Melt index (MFR) of PC at different temperatures

    Temperature/℃ MFR/(g∙(10 min)−1)
    250 5.13
    270 10.20
    290 25.63
    下载: 导出CSV

    表  6  不同工艺参数的CCF/PC复合材料纤维含量

    Table  6.   Fiber content of CCF/PC composites with different process parameters

    Process parametersFiber content/vol%
    Constants/mmVariables/mm
    S=1.0H=0.1028.66
    H=0.1326.78
    H=0.1623.57
    H=0.13S=0.828.62
    S=1.026.78
    S=1.225.18
    下载: 导出CSV

    表  7  不同工艺参数的CGF/PC复合材料纤维含量

    Table  7.   Fiber content of CGF/PC composites with different process parameters

    Process parametersFiber content/vol%
    Constants/mmVariables/mm
    S=1.2H=0.1451.35
    H=0.1746.87
    H=0.2043.93
    H=0.17S=1.050.95
    S=1.246.87
    S=1.440.84
    下载: 导出CSV

    表  8  不同工艺参数对应的CCF/PC复合材料孔隙率

    Table  8.   Porosity of CCF/PC composites corresponding to different process parameters

    Process parametersPorosity/%
    Constants/mmVariables/mm
    S=1.0 H=0.10 3.87
    H=0.13 8.64
    H=0.16 8.76
    H=0.13 S=0.8 7.29
    S=1.0 8.64
    S=1.2 14.22
    下载: 导出CSV

    表  9  不同工艺参数对应的CGF/PC复合材料孔隙率

    Table  9.   Porosity of CGF/PC composites corresponding to different process parameters

    Process parametersPorosity/%
    Constants/mmVariables/mm
    S=1.2 H=0.14 4.41
    H=0.17 5.24
    H=0.20 5.56
    H=0.17 S=1.0 6.45
    S=1.2 5.24
    S=1.4 14.44
    下载: 导出CSV
  • [1] 秦若森, 孙守政, 韩振宇, 等. 3D打印连续纤维增强热塑性复合材料成形质量的研究进展[J]. 材料导报, 2022, 36(17):200-208.

    TAI Ruosen, SUN Shouzheng, HAN Zhenyu, et al. 3D printing for continuous fiber-reinforced thermoplastic composites: A review on molding quality[J]. Materials Reports,2022,36(17):200-208(in Chinese).
    [2] 陈向明, 姚辽军, 果立成, 等. 3D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):174-198.

    CHEN Xiangming, YAO Liaojun, GUO Licheng, et al. 3D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):174-198(in Chinese).
    [3] YASSIN K, HOJJATI M. Processing of thermoplastic matrix composites through automated fiber placement and tape laying methods: A review[J]. Journal of Thermoplastic Composite Materials, 2018, 31(12): 1676-1725.
    [4] QURESHI Z, SWAIT T, SCAIFE R, et al. In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: Potential and possibilities[J]. Composites Part B: Engineering,2014,66:255-267. doi: 10.1016/j.compositesb.2014.05.025
    [5] SUN Z, XIAO J, YU X, et al. Vibration characteristics of carbon-fiber reinforced composite drive shafts fabricated using filament winding technology[J]. Composite Structures,2019,241:111725.
    [6] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
    [7] FIJUL KABIR S M, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures,2020,232:111476.
    [8] 刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004, 21(5):116-121. doi: 10.3321/j.issn:1000-3851.2004.05.022

    LIU Ling, LU Mingkun, ZHANG Boming, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Acta Materiae Compositae Sinica,2004,21(5):116-121(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.05.022
    [9] VAJARI D A, GONZALEZ C, LLORCA J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology,2014,97(16):46-54.
    [10] TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    [11] 刘良强, 肖学良, 董科, 等. 3D打印连续芳纶纤维/聚乳酸波纹夹层结构复合材料的压缩性能研究[J]. 塑料工业, 2020, 48(1):91-95. doi: 10.3969/j.issn.1005-5770.2020.01.020

    LIU Liangqiang, XIAO Xueliang, DONG Ke, et al. Compression properties of 3D printed continuous Kevlar fiber/PLA corrugated sandwich composite[J]. China Plastics Industry,2020,48(1):91-95(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.01.020
    [12] 明越科, 段玉岗, 王奔, 等. 高性能纤维增强树脂基复合材料3D打印[J]. 航空制造技术, 2019, 62(4):34-38, 46.

    MING Yueke, DUAN Yugang, WANG Ben, et al. 3D printing for high performance fiber reinforced polymer composites[J]. Aeronautical Manufacturing Technology,2019,62(4):34-38, 46(in Chinese).
    [13] UEDA M, KISHIMOTO S, YAMAWAKI M, et al. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic[J]. Composites Part A: Applied Science and Manufacturing,2020,137:105985. doi: 10.1016/j.compositesa.2020.105985
    [14] 徐奔, 张守玉, 水锋, 等. 连续碳纤维增强聚苯硫醚复合材料的3D打印及力学性能优化[J]. 高分子材料科学与工程, 2022, 38(7):84-92.

    XU Ben, ZHANG Shouyu, SHUI Feng, et al. 3D printing and mechanical properties optimization of continuous carbon fiber reinforced polyphenylene sulfide composites[J]. Polymer Materials Science and Engineering,2022,38(7):84-92(in Chinese).
    [15] 李慧斌. 3D打印连续碳纤维丝材制备工艺及性能分析[D]. 大连: 大连理工大学, 2021.

    LI Huibin. Preparation technology and performance analysis of 3D printing continuous carbon fiber wire[D]. Dalian: Dalian University of Technology, 2021(in Chinese).
    [16] JAHANGIR M N, BILLAH K M M, LIN Y, et al. Reinforcement of material extrusion 3D printed polycarbonate using continuous carbon fiber[J]. Additive Manufacturing, 2019, 28: 354-364.
    [17] 李涤尘, 鲁中良, 田小永, 等. 增材制造−面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4):22-38, 3.

    LI Dichen, LU Zhongliang, TIAN Xiaoyong, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):22-38, 3(in Chinese).
    [18] 程平, 彭勇, 汪馗, 等. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 237-242.

    CHENG Ping, PENG Yong, WANG Kui, et al. Quasi static penetration property of 3D printed continuous ramie-fiber reinforced polylactic acid composites[J]. Materials Reports, 2023, 37(1): 237-242(in Chinese).
    [19] USUN A, GUMRUK R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing,2021,46:102112. doi: 10.1016/j.addma.2021.102112
    [20] 许云鹏, 颜春, 刘东, 等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程, 2020(8): 123-128.

    XU Yunpeng, YAN Chun, LIU Dong, et al. Rrogress in preparation technology of continuous fiber reinforced thermoplastic prepregs[J]. Composites Science and Engineering, 2020(8): 123-128(in Chinese).
    [21] 刘国强. 聚合物光纤光栅传感特性研究[D]. 北京: 北京邮电大学, 2017.

    LIU Guoqiang. Research on sensing properties of polymer optical fiber grating[D]. Beijing: Beijing University of Posts and Telecommunications, 2017(in Chinese).
    [22] 李杰. 抗氧剂、光稳定剂在聚碳酸酯和改性材料中的应用技术[J]. 塑料助剂, 2021(1):1-6.

    LI Jie. Application of antioxidants and light stabilizers in polycarbonate and modified materials[J]. Plastics Additives,2021(1):1-6(in Chinese).
    [23] 王欢. 聚碳酸酯的需求与市场分析[J]. 云南化工, 2021, 48(5): 9-11.

    WANG Huan. Demand and market analysis of polycarbonate[J]. Yunnan Chemical Industry, 2021, 48(5): 9-11(in Chinese).
    [24] 田小永, 张亚园, 刘腾飞, 等. 连续碳纤维增强尼龙复合材料预浸丝制备与3D打印性能研究[J]. 航空制造技术, 2021, 64(15):24-33.

    TIAN Xiaoyong, ZHANG Yayuan, LIU Tengfei, et al. Prepreg preparation and 3D printing of continuous carbon fiber reinforced nylon composite[J]. Aerospace Manufacturing Technology,2021,64(15):24-33(in Chinese).
    [25] 中国国家标准化管理委员会. 碳纤维复丝拉伸性能试验方法: GB/T 3362—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People's Republic of China. Test methods for tensile properties of carbon fiber multifilament: GB/T 3362—2017[S]. Beijing: China Standards Press, 2017.
    [26] 中国国家标准化管理委员会. 定向维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014

    Standardization Administration of the People's Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014.
    [27] LI H, LIU B, GE L, et al. Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum[J]. Composites Part B: Engineering,2021,225:109277. doi: 10.1016/j.compositesb.2021.109277
  • 加载中
图(14) / 表(9)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  316
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2022-12-27
  • 录用日期:  2023-01-22
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回