留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UiO-66/壳聚糖的制备及其对U(VI)的吸附机制

荣丽杉 夏麟 周书葵 熊超凡 段毅

荣丽杉, 夏麟, 周书葵, 等. UiO-66/壳聚糖的制备及其对U(VI)的吸附机制[J]. 复合材料学报, 2022, 39(10): 4879-4888. doi: 10.13801/j.cnki.fhclxb.20211025.002
引用本文: 荣丽杉, 夏麟, 周书葵, 等. UiO-66/壳聚糖的制备及其对U(VI)的吸附机制[J]. 复合材料学报, 2022, 39(10): 4879-4888. doi: 10.13801/j.cnki.fhclxb.20211025.002
RONG Lishan, XIA lin, ZHOU Shukui, et al. Preparation of UiO-66/chitosan and its adsorption mechanism of U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4879-4888. doi: 10.13801/j.cnki.fhclxb.20211025.002
Citation: RONG Lishan, XIA lin, ZHOU Shukui, et al. Preparation of UiO-66/chitosan and its adsorption mechanism of U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4879-4888. doi: 10.13801/j.cnki.fhclxb.20211025.002

UiO-66/壳聚糖的制备及其对U(VI)的吸附机制

doi: 10.13801/j.cnki.fhclxb.20211025.002
基金项目: 湖南省教育厅项目(19C1588)
详细信息
    通讯作者:

    段毅,博士,工程师,研究方向为水质净化与水污染控制 E-mail:duanyi1987@163.com

  • 中图分类号: TB333

Preparation of UiO-66/chitosan and its adsorption mechanism of U(VI)

  • 摘要: 铀矿开采和冶炼等工艺产生大量低浓度铀废水,危害着生态环境和人类健康,从含铀废水中去除铀(VI)迫在眉睫。本文以UiO-66、壳聚糖(CS)为原料,采用交联法制备UiO-66/CS新型复合材料,通过静态吸附实验,考察不同pH值、吸附剂投加量、吸附时间及铀初始浓度等外部因素对U(VI)去除率的影响。通过SEM、FTIR、XPS等对UiO-66/CS材料进行表征分析,揭示吸附剂去除U(VI)的机制。结果表明:在铀初始浓度为5 mg/L,温度为298 K,pH为5,投加量为0.15 g/L,吸附时间120 min条件下,UiO-66/CS对U(VI)的去除率可达90.24%。吸附过程符合准二级动力学模型和Freundlich等温吸附模型。U(VI)吸附去除机制主要是—NH、—COOH、Zr—O、—OH等官能团与U(VI)发生络合作用。

     

  • 图  1  UiO-66/壳聚糖(CS)的制备示意图

    Figure  1.  Schematic diagram of the preparation of UiO-66/chitosan (CS)

    H2BDC—Terephthalic acid; DMF—N,N-dimethylformamide

    图  2  UiO-66 (a)和UiO-66/CS吸附U(VI)前(b)、后(c)的SEM图像

    Figure  2.  SEM images of UiO-66 (a) and UiO-66/CS before (b) and after (c) adsorption of U(VI)

    图  3  UiO-66 (a)和UiO-66/CS吸附U(VI)前(b)、后(c)的EDS图谱

    Figure  3.  EDS patterns of UiO-66 (a) and UiO-66/CS before (b) and after (c) adsorption of U(VI)

    图  4  CS、UiO-66、UiO-66/CS (a)和UiO-66/CS吸附U(VI)前后(b)的红外光谱图

    Figure  4.  Infrared spectra of CS, UiO-66, UiO-66/CS (a) and UiO-66/CS before and after U(VI) adsorption (b)

    图  5  UiO-66/CS吸附U(VI)前后的XPS全谱图(a);U4f (b)、N1s (c)、O1s ((d)、(e))的高分辨率图谱

    Figure  5.  XPS full spectrum of UiO-66/CS before and after adsorption of U(VI) (a); High-resolution spectras of U4f (b), N1s (c), O1s ((d), (e))

    图  6  pH对UiO-66/CS吸附U(VI)的影响

    Figure  6.  Effect of pH on UiO-66/CS adsorption of U(VI)

    图  7  投加量对UiO-66/CS吸附U(VI)的影响

    Figure  7.  Influence of dosage on UiO-66/CS adsorption of U(VI)

    图  8  振荡时间对UiO-66/CS吸附U(VI)的影响

    Figure  8.  Effect of oscillation time on UiO-66/CS adsorption of U(VI)

    图  9  铀初始浓度对UiO-66/CS吸附U(VI)的影响

    Figure  9.  Effect of initial uranium concentration on the adsorption of U(VI) by UiO-66/CS

    图  10  干扰离子对UiO-66/CS吸附U(VI)的影响

    Figure  10.  Effect of interfering ions on the adsorption of U(VI) by UiO-66/CS

    图  11  UiO-66/CS吸附U(VI)的准一级(a)和准二级动力学(b)拟合曲线图

    Figure  11.  Fitting curves of quasi-first-order (a) and quasi-second-order kinetics (b) of UiO-66/CS adsorption of U(VI)

    qe—Equilibrium adsorption capacity;qt—Adsorption amount at time t; t—Reaction time

    图  12  UiO-66/CS吸附U(VI)的Langmuir (a) 和Freundlich (b)拟合曲线

    Figure  12.  Langmuir (a) and Freundlich (b) fitting curves of UiO-66/CS adsorption of U(VI)

    ce—Equilibrium concentration

    表  1  UiO-66/CS吸附U(VI)的动力学方程拟合参数

    Table  1.   Fitting parameters of the kinetic equation of UiO-66/CS adsorption of U(VI)

    Adsorbentqe,exp/(mg·g−1)Quasi-first-order dynamics modelQuasi-second-order dynamics model
    k1/min−1qe/(mg·g−1)R2k2/(g·(mg·min)−1)qe/(mg·g−1)R2
    UiO-66/CS30.0780.38018.7930.986 0.00531.0560.999
    Notes: qe,exp—Experimental adsorption capacity; qe—Equilibrium adsorption capacity; k1—Quasi-first-order adsorption rate constant; k2—Quasi-second-order adsorption rate constant; R2—Linear correlation coefficient.
    下载: 导出CSV

    表  2  UiO-66/CS吸附U(VI)的动力学方程拟合参数

    Table  2.   Fitting parameters of the kinetic equation of UiO-66/CS adsorption of U(VI)

    Temperature/KLangmuir Freundlich
    qmax/(mg·g−1)bR2KFnR2
    288173.3100.1900.95631.5922.1220.976
    298179.2110.2460.96737.4242.2280.979
    308193.7980.2990.96344.0222.2750.987
    Notes: qmax—Maximum adsorption capacity; b—Adsorption equilibrium constant of the Langmuir model; KF—Adsorption equilibrium constant of Freundlich model; 1/n—Empirical parameter related to the adsorption strength.
    下载: 导出CSV
  • [1] NING S Y, WANG X P, LIU R Q, et al. Evaluation of Me2-CA-BTP/SiO2-P adsorbent for the separation of minor actinides from simulated HLLW[J]. Journal of Radioanalytical and Nuclear Chemistry,2015,303(3):2011-2017. doi: 10.1007/s10967-014-3651-7
    [2] LU W, TANG S Y, LI L, et al. Adsorption and recovery of amidoxime modified nano-Fe3O4-aspergillus niger for U(VI) from low concentration uranium solution[J]. Nanoscience and Nanotechnology Letters,2019,11(3):337-345. doi: 10.1166/nnl.2019.2896
    [3] PANAGIOTOU N, LISATAOU I, POURNARA A, et al. Water-stable 2D Zr MOFs with exceptional UO22+ sorption capability[J]. Journal of Materials Chemistry A,2020,8(4):1849-1857. doi: 10.1039/C9TA10701K
    [4] MA F Q, DONG B R, GUI Y Y, et al. Adsorption of low-concentration uranyl ion by amidoxime polyacrylonitrile fibers[J]. Industrial & Engineering Chemistry Research,2018,57(51):17384-17393. doi: 10.1021/acs.iecr.8b03509
    [5] World Health Organization. Guidelines for drinking-water quality[M]. Geneva: World Health Organization, 2004.
    [6] 王建龙, 刘海洋. 放射性废水的膜处理技术研究进展[J]. 环境科学学报, 2013, 33(10):2639-2656. doi: 10.13671/j.hjkxxb.2013.10.010

    WANG Jianlong, LIU Haiyang. Research progress on membrane treatment technology of radioactive waste water[J]. Journal of Environmental Science,2013,33(10):2639-2656(in Chinese). doi: 10.13671/j.hjkxxb.2013.10.010
    [7] NORO S I, KITAGAWA S, AKUTAGAWA T, et al. Coordination polymers constructed from transition metal ions and organic N-containing heterocyclic ligands: Crystal structures and microporous properties[J]. Progress in Polymer Science,2009,34(3):240-279. doi: 10.1016/j.progpolymsci.2008.09.002
    [8] LIU J M, YIN X H, LIU T. Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,95:416-423. doi: 10.1016/j.jtice.2018.08.012
    [9] WU Z L, WANG C H, ZHAO B, et al. A semi-conductive copper-organic framework with two types of photocatalytic activity[J]. Angewandte Chemie International Edition,2016,55(16):4938-4942. doi: 10.1002/anie.201508325
    [10] HU Z C, DEIBERT B J, LI J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews,2014,43(16):5815-5840. doi: 10.1039/C4CS00010B
    [11] LAZARO I A, WELLS C J R, FORGAN R S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery[J]. Angewandte Chemie International Edition,2020,59(13):5211-5217. doi: 10.1002/anie.201915848
    [12] ZHAO B, YUAN L Y, WANG Y, et al. Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: From batch adsorption to dynamic column separation[J]. ACS Applied Materials & Interfaces,2021,13(14):16300-16308. doi: 10.1021/acsami.1c00364
    [13] QIU J H, FENG Y, ZHANG X F, et al. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms[J]. Jour-nal of Colloid and Interface Science,2017,499:151-158. doi: 10.1016/j.jcis.2017.03.101
    [14] KANDIAH M, NILSEN M H, USSEGLIO S, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials,2010,22(24):6632-6640. doi: 10.1021/cm102601v
    [15] NIE J, YI S Z. Neutralization of acid wastewater and magnesium hydroxide slurry from seawater electrolytic pretreatment[J]. Advanced Materials Research,2015,1073:949-954. doi: 10.4028/www.scientific.net/AMR.1073-1076.949
    [16] DANDIL S, SAHBAZ D A, ACIKGOZ C. Adsorption of Cu(II) ions onto crosslinked chitosan/waste active sludge char (WASC) beads: Kinetic, equilibrium, and thermodynamic study[J]. International Journal of Biological Macromolecules,2019,136:668-675. doi: 10.1016/j.ijbiomac.2019.06.063
    [17] 杨爱丽. 氧化石墨烯-壳聚糖复合吸附剂的制备及其吸附性能[J]. 稀有金属材料与工程, 2018, 47(5):1583-1588.

    YANG Aili. Preparation and adsorption performance of graphene oxide-chitosan composite adsorbent[J]. Rare Metal Materials and Engineering,2018,47(5):1583-1588(in Chinese).
    [18] YANG W X, CHENG M J, HAN Y, et al. Heavy metal ions' poisoning behavior-inspired etched UiO-66/CTS aerogel for Pb(II) and Cd(II) removal from aqueous and apple juice[J]. Journal of Hazardous Materials,2021,401:123318. doi: 10.1016/j.jhazmat.2020.123318
    [19] JAMSHIDIFARD S, KOUSHKBAGHI S, HOSSEINI S, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions[J]. Journal of Hazardous Materials,2019,368:10-20. doi: 10.1016/j.jhazmat.2019.01.024
    [20] ZHU X Y, GU J L, WANG Y, et al. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release[J]. Chemical Communications,2014,50(63):8779-8782. doi: 10.1039/C4CC02570A
    [21] AKYUZ L, KAYA M, KOC B, et al. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties[J]. International Journal of Biological Macromolecules,2017,105(Pt 2):1401-1411. doi: 10.1016/j.ijbiomac.2017.08.161
    [22] 高翔. 生物炭-壳聚糖复合物的制备及其对低浓度含铀废水的吸附试验研究[D]. 衡阳: 南华大学, 2019.

    GAO Xiang. Preparation of biochar-chitosan complex and its adsorption experiment on low-concentration uranium-containing wastewater[D]. Hengyang: University of South China, 2019(in Chinese).
    [23] GUO D X, SONG X M, ZHANG L L, et al. Recovery of uranium(VI) from aqueous solutions by the polyethyleneimine-functionalized reduced graphene oxide/molybdenum disulfide composition aerogels[J]. Journal of the Taiwan Institute of Chemical Engineers,2020,106:198-205. doi: 10.1016/j.jtice.2019.09.029
    [24] DUAN S X, XU X T, LIU X, et al. Highly enhanced adsorption performance of U(VI) by non-thermal plasma modified magnetic Fe3O4 nanoparticles[J]. Journal of Colloid and Interface Science,2018,513:92-103. doi: 10.1016/j.jcis.2017.11.008
    [25] LI X, LIU Y, ZHANG C L, et al. Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions[J]. Chemical Engineering Journal,2018,336:241-252. doi: 10.1016/j.cej.2017.11.188
    [26] HAN M N, KONG L J, HU X L, et al. Phase migration and transformation of uranium in mineralized immobilization by wasted bio-hydroxyapatite[J]. Journal of Cleaner Production,2018,197:886-894. doi: 10.1016/j.jclepro.2018.06.253
    [27] 俞坤, 刘金香, 谢水波, 等. 聚吡咯/石墨相氮化碳复合材料吸附铀(VI)的性能与机制[J]. 材料导报, 2020, 34(23):23020-23026. doi: 10.11896/cldb.19110056

    YU Kun, LIU Jinxiang, XIE Shuibo, et al. Adsorption performance and mechanism of polypyrrole/graphite carbon nitride composite material for uranium(VI)[J]. Materials Review,2020,34(23):23020-23026(in Chinese). doi: 10.11896/cldb.19110056
    [28] YANG P P, LIU Q, LIU J Y, et al. Interfacial growth of a metal-organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(VI)[J]. Journal of Materials Che-mistry A,2017,5(34):17933-17942. doi: 10.1039/C6TA10022H
    [29] PLAZINSKI W, RUDZINSKI W, PLAZINSKA A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review[J]. Advances in Colloid and Interface Science,2009,152(1-2):2-13. doi: 10.1016/j.cis.2009.07.009
    [30] 杨金辉, 胡世琴, 杨斌, 等. 氨化烟末生物碳吸附剂的制备及对Cr(VI)的吸附行为[J]. 复合材料学报, 2022, 39(1):222-231. doi: 10.13801/j.cnki.fhclxb.20210320.001

    YANG Jinhui, HU Shiqin, YANG Bin, et al. Preparation of bio-carbon adsorbent for ammoniated tobacco dust and its adsorption behavior for Cr(VI)[J]. Acta Materiae Compositae Sinica,2022,39(1):222-231(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210320.001
    [31] IRVING L. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40(9):1361-1403. doi: 10.10.1021/ja02242a004
    [32] HERBERT F. Uber die adsorption in lösungen[J]. Zeitschrift für Physikalische Chemie,1907,57U(1):385-470. doi: 10.1515/zpch-1907-5723
    [33] LIU W J, ZHANG L Y, CHEN F M, et al. Efficiency and mechanism of adsorption of low-concentration uranium from water by a new chitosan/aluminum sludge compo-site aerogel[J]. Dalton Transactions,2020,49(10):3209-3221. doi: 10.1039/C9DT04670D
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  520
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 修回日期:  2021-10-09
  • 录用日期:  2021-10-13
  • 网络出版日期:  2021-10-25
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回