Forming characteristics of Mg/Al laminated composite based on lattice severe deformation rolling
-
摘要:
镁/铝层合板兼具镁合金比强度高、比刚度高和铝合金耐腐蚀性强的优点,能够充分发挥组元材料性能优势,在航空航天、轨道交通、国防军工等领域有广阔的工程应用前景,是当今工业产品轻量化方向重点发展的高性能复合材料。由于镁合金与铝合金物理和力学性能上的差异,采用传统方法轧制镁/铝层合板存在结合强度低、板形翘曲和边裂严重等技术难题。本文基于一种新型的轧制原理——点阵强变形轧制(Lattice Severe Deformation Rolling,LSDR),研究两种组元板材在复杂辊缝下的塑性流动规律和成形特点,并通过轧制实验进行了验证。发现当采用特殊设计的波纹轧辊对难变形金属板材施加点阵分布的强非均匀变形作用时,能够在镁合金板材表面和结合界面处生成网格状三维结构,增大结合界面结合面积的同时可以获得板形平直、无可见边裂的镁/铝层合板;轧制过程中,波纹辊迫使镁合金板局部位置产生剧烈的塑性变形,增强材料沿轧向和横向的流动,相比于传统平轧在结合界面处会产生更大的剪切应力,诱发更多新鲜金属原子暴露,有利于提高金属原子扩散机率,进而形成可靠的冶金结合;LSDR原理轧制所得镁/铝层合板的力学性能测试结果显示,各项力学性能参数均优于传统平轧,在轧向和横向上,抗拉强度各提升9.5%和4.4%,拉剪强度各提升34.5%和78.4%,抗弯强度各提升19%和22%,结合界面处生成了约5μm的扩散层,界面处无空隙、裂纹、界面分层等缺陷;波纹辊对镁合金板晶粒细化效果显著。本文研究为高质量双金属层合板的制备提供了技术参考。 点阵强变形原理轧制镁/铝层合板方案 镁/铝层合板样件 Abstract: Aiming at the technical problems such as low bonding strength, serious warpage and edge cracks in the rolling process of Mg/Al laminated composite, one rolling pass forming with a corrugated roll was studied based on Lattice Severe Deformation Rolling (LSDR) principle. The plastic flow law and forming characteristics of the metal plates at complex roll gap were analyzed by finite element numerical calculation, and the rolling experiment was performed. The results show that a series of local strong non-uniform deformation effects distributed as a lattice structure can be applied on the magnesium alloy plate and at the bonding interface by the corrugated roll, and the plastic flow along both rolling direction (RD) and transverse direction (TD) has been strengthened when the LSDR principle is used. Additionally, larger shearing stress can be produced at the bonding interface. Compared with the traditional rolling using flat rolls, the tensile strength, tensile-shear strength and bending strength of the laminated composite prepared on the LSDR principle are significantly improved, and the maximum increase rate of tensile-shear strength obtained reaches 77%. Meanwhile, the bonding interface is uniform and reliable. The diffusion layer is about 5 μm thick. This study provides a valuable reference for the preparation of high-quality Mg/Al laminated composite.-
Key words:
- LSDR /
- corrugated roll /
- Mg/Al laminated composite /
- interface /
- bonding performance
-
表 1 AZ31B与5052的化学成分
Table 1. Chemical composition of AZ31B and 5052
(wt%) Material Mg Cu Ca Mn Si Al Zn Cr Fe AZ31 B Others 0.01 0.04 0.8 0.07 3.2 1.2 - - 5052 2.2-2.8 0.1 - 0.1 0.25 Others 0.1 0.15-0.35 0.4 -
[1] 陈连生, 张鑫磊, 郑小平, 等. 轧制双金属复合板材的研究现状[J]. 稀有金属材料与工程, 2018, 47(10):3243-3250.CHEN L S, ZHANG X L, ZHENG X P, et al. Research status of bimetal laminated composite plate prepared by rolling process[J]. Rare Metal Materials and Engineering,2018,47(10):3243-3250(in Chinese). [2] KUZ'MIN E V, LYSAK V I, KUZ’MIN S V, et al. Influence of structure formation and properties of bimetal produced by ultrasound-assisted explosive welding[J]. Journal of Materials Processing Technology,2021,71:734-742. [3] 彭治力, 颜家维, 唐靖钊, 等. 电流辅助累积叠轧镁/铝层状复合板的微观形貌及力学性能[J]. 机械工程材料, 2019, 43(12):1-6. doi: 10.11973/jxgccl201912001PENG Z L, YAN J W, TANG J Z, et al. Microstructure and mechanical properties of Mg/Al multilayered composite sheet by electrically-assisted accumulative roll bonding[J]. Materials for Mechanical Engineering,2019,43(12):1-6(in Chinese). doi: 10.11973/jxgccl201912001 [4] WANG T, LIU W L, LIU Y M, et al. Formation mechanism of dynamic multi-neutral points and cross shear zones in corrugated rolling of Cu/Al laminated composite[J]. Journal of Materials Processing Technology,2021,295:117157. doi: 10.1016/j.jmatprotec.2021.117157 [5] WU Y, FENG B, XIN Y C, et al. Microstructure and mechanical behavior of a Mg AZ31/Al 7050 laminate composite fabricated by extrusion[J]. Materials Science and Engineering:A,2015,640:454-459. doi: 10.1016/j.msea.2015.05.094 [6] 赵博文, 周存龙, 赵广辉, 等. 轧制工艺制备镁铝层合板的研究现状[J]. 重型机械, 2020(5):1-8. doi: 10.3969/j.issn.1001-196X.2020.05.001ZHAO B W, ZHOU C L, ZHAO G H, et al. Research status of Mg-Al laminate prepared by rolling process[J]. Heavy Machinery,2020(5):1-8(in Chinese). doi: 10.3969/j.issn.1001-196X.2020.05.001 [7] ZHU Y C, WEI Z J, RONG S F, et al. Formation mechanism of bimetal composite layer between LCS and HCCI[J]. Research & Development,2016,13(6):396-401. [8] PENG B, JIE J C, WANG M F, et al. Microstructure characteristics and deformation behavior of tin bronze/1010 steel bimetal layered composite by continuous solid/liquid bonding[J]. Materials Science & Engineering A,2022,844:143155. [9] 王涛, 齐艳阳, 刘江林, 等. 金属层合板轧制复合工艺国内外研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6):42-56. doi: 10.11918/202003114WANG T, QI Y Y, LIU J L, et al. Research progress of metal laminates roll bonding process at home and abroad[J]. Journal of Harbin Institute of Technology,2020,52(6):42-56(in Chinese). doi: 10.11918/202003114 [10] HUO P D, LI F, WANG Y, et al. Formability and interface structure of Al/Mg/Al composite sheet rolled by hard-plate rolling (HPR)[J]. The International Journal of Advanced Manufacturing Technology,2022,118:55-65. doi: 10.1007/s00170-021-07178-0 [11] 范金辉, 李鹏飞, 梁晓军, 等. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7):493-500.FAN J H, LI P F, LINAG X J, et al. Interface evolution during rolling of Ni-clad stainless steel plate[J]. Chinese Journal of Materials Research,2021,35(7):493-500(in Chinese). [12] WANG S, HUANG L J, LIU B X, et al. Microstructure and mechanical properties of Ti6 Al4 V based laminated composites at various rolling reductions[J]. Composites Communications,2022,33:101212. doi: 10.1016/j.coco.2022.101212 [13] ZHANG X P, YANG T H, CASTAGNE S, et al. Microstructure; Bonding Strength and Thickness Ratio of Al/Mg/Al Alloy Laminated Composites Prepared by Hot Rolling[J]. Materials Science and Engineering A,2011,528:1954-1960. doi: 10.1016/j.msea.2010.10.105 [14] CHEN Z J, LIU Q, WANG G J, et al. Deformation inhomogeneities of Mg–Al laminated metal composites fabricated by accumulative roll bonding[J]. Materials Research Innovations,2015,19(S4):147-151. [15] 谢红飙, 郑阳, 郭允畅, 等. 轧制制备铝/镁复合板数值模拟和翘曲变形控制[J]. 精密成形工程, 2021, 13(6):42-48. doi: 10.3969/j.issn.1674-6457.2021.06.005XIE H B, ZHENG Y, GUO Y C, et al. Numerical simulation and warpage deformation control of rolled aluminum/magnesium composite plate[J]. Journal of Netshape Forming Engineering,2021,13(6):42-48(in Chinese). doi: 10.3969/j.issn.1674-6457.2021.06.005 [16] NIE H, LIANG W, CHI C, et al. Effect of annealing on microstructure and tensile properties of 5052/AZ31/5052 clad sheets[J]. The Minerals, Metals & Materials Society,2016,68(5):1282-1292. [17] 常东旭, 王平, 赵莹莹. 铜/铝异步轧制复合带的界面反应与强化机制[J]. 东北大学学报(自然科学版), 2019, 40(11):1574-1578. doi: 10.12068/j.issn.1005-3026.2019.11.010CHANG D X, WANG P, ZHAO Y Y. Interfacial reaction and strengthening mechanism of Cu/Al composite strip produced by asymmetrical rolling[J]. Journal of Northeastern University (Natural Science),2019,40(11):1574-1578(in Chinese). doi: 10.12068/j.issn.1005-3026.2019.11.010 [18] DHINWAL S S, ERNOULD C, BWAUSIR B. Facilitating the occurrence of dynamic recrystallization in plain extra low-carbon steel by warm asymmetric rolling[J]. Materials Characterization,2022,189:111942. doi: 10.1016/j.matchar.2022.111942 [19] 祖国胤, 李小兵, 丁明明, 等. 异步轧制铜/铝双金属复合板变形行为的研究[J] 东北大学学报(自然科学版), 2011, 32(5): 675-678.ZU G Y, LI X B, DING M M, et al. Investigating deformation behavior of asymmetrically rolled Cu/Al bimetal clad sheets[J]. Journal of Northeastern University (Natural Science), 2011, 32(5): 675-678(in Chinese). [20] 刘子健, 赵红阳, 胡小东, 等. 轧制温度和轧制方式对镁铝复合板组织性能的影响[J]. 轻金属, 2015(10):55-58.LIU Z J, ZHAO H Y, HU X D, et al. Effects of rolling temperature and method on the microstructure and performance of Mg-Al clad sheets[J]. Light Metals,2015(10):55-58(in Chinese). [21] 魏伟, 史庆南. 铜/钢双金属板异步轧制复合机理研究[J]. 稀有金属, 2001, 25(4):307-311. doi: 10.3969/j.issn.0258-7076.2001.04.016WEI W, SHI Q N. Bonding mechanism of Cu/Steel clad sheet in asymmetrical rolling of bimetal[J]. Rare Metals,2001,25(4):307-311(in Chinese). doi: 10.3969/j.issn.0258-7076.2001.04.016 [22] FENG G, WANG L, GAO H J. Lattice severe deformation rolling (LSDR) for bimetal laminated composite preparation[J]. Materials and Manufacturing Processes, 2022,https://doi.org/10.1080/10426914.2022.2075891. [23] XU J J, FU J Y, LI S J, et al. Effect of annealing and cold rolling on interface microstructure and properties of Ti/Al/Cu clad sheet fabricated by horizontal twin-roll casting[J]. Journal of Materials Research and Technology,2022,16:530-543. doi: 10.1016/j.jmrt.2021.12.017 [24] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11):1362-1379. doi: 10.11900/0412.1961.2021.00349PAN F S, JIANG B. Development and application of plastic processing technologies of magnesium alloys[J]. Acta Metallurgica Sinica,2021,57(11):1362-1379(in Chinese). doi: 10.11900/0412.1961.2021.00349 [25] PEKGULERYUZ M, CELIKIN M, HOSEINI M, et al. Study on edge cracking and texture evolution during 150°C rolling of magnesium alloys: the effects of axial ratio and grain size[J]. Journal of Alloys and Compounds,2012,510(1):15-25. doi: 10.1016/j.jallcom.2011.08.093 [26] 张柏瑞, 周存龙, 赵广辉, 等. 双温段热轧态镁铝层合板性能分析[J]. 塑性工程学报, 2022, 29(5):79-85. doi: 10.3969/j.issn.1007-2012.2022.05.010ZHANG B R, ZHOU C L, ZHAO G H, et al. Property analysis of hot rolled Mg-Al laminates at double-temperature section[J]. Journal of Plasticity Engineering,2022,29(5):79-85(in Chinese). doi: 10.3969/j.issn.1007-2012.2022.05.010 [27] ZHAO G X, LANG Y J, HAO J, et al. Nb/NiTi laminate composite with high pseudoelastic energy dissipation capacity[J]. Materials Today Nano,2022,19:100238. doi: 10.1016/j.mtnano.2022.100238 [28] MA X G, ZHAO J W, DU W, et al. Quantification of texture-induced ridging in ferritic stainless steels 430 and 430 LR during tensile deformation[J]. Journal of Materials Research and Technology,2019,8(2):2041-2051. doi: 10.1016/j.jmrt.2018.12.019 [29] 宋广胜, 姜敬前, 陈帅峰, 等. 非对称轧制AZ31镁合金板材组织与性能[J]. 稀有金属材料与工程, 2017, 46(11):3512-3517.SONG G S, JIANG J Q, CHEN S F, et al. Microstructure and mechanical properties of AZ31 magnesium alloy sheet processed by asymmetry rolling[J]. Rare Metal Materials and Engineering,2017,46(11):3512-3517(in Chinese). [30] NIE J, LIU M, WANG F, ZHAO Y, et al. Fabrication of Al/Mg/Al composites via accumulative roll bonding and their mechanical properties[J]. Materials,2016,9(11):951. doi: 10.3390/ma9110951 [31] FAN J, DAI X, XIE R, et al. Surface ferrite grain refinement and mechanical properties of low carbon steel plates[J]. Journal of Iron and Steel Research,2006,13(4):35-39. doi: 10.1016/S1006-706X(06)60074-5 [32] 梅瑞斌, 史现利, 包立, 等. 多道次热辊轧制Al/Mg 层状复合板材结合面特性[J]. 复合材料学报, 2022, 39(7):3485-3497.MEI R B, SHI X L, BAO L, et al. Interface characteristics study of Al/Mg laminated compo-site sheets by multi-passes RHR[J]. Acta Materi-ae Compositae Sinica,2022,39(7):3485-3497(in Chinese). [33] FAN J, DAI X, XIE R, et al. Surface ferrite grain refinement and mechanical properties of low carbon steel plates[J]. Journal of Iron and Steel Research,2006,13(4):35-39. doi: 10.1016/S1006-706X(06)60074-5 [34] 蔡正旭. 热轧变形Mg-1.5 Zn-(0.2~1.0)Gd合金再结晶组织及织构演变规律研究[J]. 稀有金属, 2022, 46(5):581-588.CAI Z X. Recrystallization and texture mechanism of hot rolled Mg-1.5 Zn-(0.2~1.0)Gd alloy[J]. Chinese Journal of Rare Metals,2022,46(5):581-588(in Chinese). [35] LI Q K, YAN H, LIU H H, et al. Dynamic recrystallization mechanism and near-isotropic mechanical properties of WE43 magnesium alloy sheets rolled at different temperatures[J]. Materials Characterization,2022,193:112259. doi: 10.1016/j.matchar.2022.112259 [36] WANG T, LI S, NIU H, et al. EBSD research on the interfacial microstructure of the corrugated Mg/Al laminated material[J]. Journal of Materials Research and Technology,2020,9(3):5840-5847. doi: 10.1016/j.jmrt.2020.03.111 -