留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭负载磁性纳米碳羟基磷灰石(CHAP-γ-Fe2O3/BC)去除水中U(Ⅵ)的性能与机制

邵雄斌 谢水波 麦颖清 姜培烜

邵雄斌, 谢水波, 麦颖清, 等. 生物炭负载磁性纳米碳羟基磷灰石(CHAP-γ-Fe2O3/BC)去除水中U(Ⅵ)的性能与机制[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 邵雄斌, 谢水波, 麦颖清, 等. 生物炭负载磁性纳米碳羟基磷灰石(CHAP-γ-Fe2O3/BC)去除水中U(Ⅵ)的性能与机制[J]. 复合材料学报, 2024, 42(0): 1-13.
SHAO Xiongbin, XIE Shuibo, MAI Yingqing, et al. Performance and mechanism of biochar loaded magnetic nanocarbon hydroxyapatite(CHAP-γ-Fe2O3/BC) for the removal of U(VI) from water[J]. Acta Materiae Compositae Sinica.
Citation: SHAO Xiongbin, XIE Shuibo, MAI Yingqing, et al. Performance and mechanism of biochar loaded magnetic nanocarbon hydroxyapatite(CHAP-γ-Fe2O3/BC) for the removal of U(VI) from water[J]. Acta Materiae Compositae Sinica.

生物炭负载磁性纳米碳羟基磷灰石(CHAP-γ-Fe2O3/BC)去除水中U(Ⅵ)的性能与机制

基金项目: 国家自然科学基金项目(11475080);湖南省自然科学基金项目(2021JJ30579);湖南省研究生科研创新项目(CX20230972)
详细信息
    通讯作者:

    谢水波,教授,博士,主要从事水处理理论与技术、环境模拟与污染控制研究 E-mail:xiesbmr@263.net

  • 中图分类号: TB332;X703

Performance and mechanism of biochar loaded magnetic nanocarbon hydroxyapatite(CHAP-γ-Fe2O3/BC) for the removal of U(VI) from water

Funds: National Natural Science Foundation of China (11475080); Natural Science Foundation of Hunan Province (2021JJ30579); Postgraduate Scientific Research Innovation Project of Hunan Province (CX20230972)
  • 摘要: 针对利用功能材料去除水中U(Ⅵ)的效率与纳米颗粒易团聚的问题,利用玉米秸秆、蛋壳以及磁性γ-Fe2O3,采用动态油热法和浸渍法,制备了生物炭负载磁性纳米碳羟基磷灰石(CHAP-γ-Fe2O3/BC)复合材料,试验考察了其性能并用于水中U(Ⅵ)的去除。当U(Ⅵ)初始浓度为5 mg/L,CHAP-γ-Fe2O3/BC投加量为0.1 g/L,pH值为6,温度30°,反应时间1 h时,试验结果表明:CHAP-γ-Fe2O3/BC对U(Ⅵ)的最大吸附容量达324.4 mg/g,去除率达95.93%。拟二级动力学模型和Langmuir模型可较好拟合CHAP-γ-Fe2O3/BC对U(Ⅵ)的吸附过程,表明以单分子层化学吸附为主。材料通过表面改性技术,实现了减弱团聚的目的。复合材料在磁场中其表现出良好的分离回收和循环利用性。FTIR、XPS等表征结果证明该材料对铀的去除机制主要包括离子交换、溶解-沉淀的化学吸附作用和表面络合作用。

     

  • 图  1  不同烧制温度和不同质量比生物质制备的生物炭负载磁性纳米碳羟基磷灰石(CHAP-γ-Fe2O3/BC)复合材料去除U(Ⅵ)预实验

    Figure  1.  Different firing temperatures and different mass ratios biomass prepared by the biochar-loaded magnetic nanocarbon hydroxyapatite (CHAP-γ-Fe2O3/BC) composites pre-experiment for U(VI) removal

    图  2  BC和CHAP-γ-Fe2O3/BC的外表面(a)、(d),横切面(b)、(e)的SEM图;BC和CHAP-γ-Fe2O3/BC的EDS-Mapping图(c)、(f);BC和CHAP-γ-Fe2O3/BC吸附U(VI)前后的EDS图谱(g)、(h)和(i)

    Figure  2.  SEM maps of BC and CHAP-γ-Fe2O3/BC on the outer surfaces (a), (d), and cross sections (b), (e); EDS-Mapping of BC and CHAP-γ-Fe2O3/BC (c), (f); EDS maps of BC and CHAP-γ-Fe2O3/BC before and after adsorption of U(VI) (g), (h), and (i)

    图  3  CHAP和CHAP-γ-Fe2O3/BC吸附U(VI)前后的XRD图谱

    Figure  3.  XRD patterns of CHAP and CHAP-γ-Fe2O3/BC before and after U(VI) adsorption

    图  4  BC(a)和CHAP-γ-Fe2O3/BC(b)的N2吸附-脱附等温线和孔径分布

    Figure  4.  N2 adsorption-desorption isotherms and pore size distribution of BC (a) and CHAP-γ-Fe2O3/BC (b)

    图  5  BC和CHAP-γ-Fe2O3/BC的FTIR图谱

    Figure  5.  FTIR profiles of BC and CHAP-γ-Fe2O3/BC

    图  6  CHAP-γ-Fe2O3/BC的磁滞回线

    Figure  6.  Hysteresis lines of CHAP-γ-Fe2O3/BC

    图  7  CHAP-γ-Fe2O3/BC吸附U(VI):(a)pH值的影响;(b)投加量的影响

    Figure  7.  U(VI) adsorption by CHAP-γ-Fe2O3/BC: (a)Effect of pH value;(b) Effect of dosing amount

    图  8  CHAP-γ-Fe2O3/BC吸附U(VI) :(a)干扰离子的影响;(b)NaCl离子强度的影响

    Figure  8.  U(VI) adsorption by CHAP-γ-Fe2O3/BC: (a) Effect of interfering ions; (b) Effect of NaCl ion intensity

    图  9  CHAP-γ-Fe2O3/BC吸附U(VI): (a)时间的影响; (b)拟一级动力学; (c)拟二级动力学; (d)颗粒内扩散

    Figure  9.  U(VI) adsorption by CHAP-γ-Fe2O3/BC: (a) Effect of time; (b) Proposed primary dynamics; (c) Proposed secondary dynamics;(d) Intraparticle diffusion

    图  10  CHAP-γ-Fe2O3/BC吸附U(VI): (a)吸附等温线;(b)lnKL1/T线性关系图

    Figure  10.  U(VI) adsorption by CHAP-γ-Fe2O3/BC: (a) Adsorption isotherm;(b) linear plot of lnKL vs 1/T.

    图  11  不同循环次数的CHAP-γ-Fe2O3/BC吸附-解吸效率

    Figure  11.  Adsorption-desorption efficiency of CHAP-γ-Fe2O3/BC with different number of cycles

    图  12  CHAP-γ-Fe2O3/BC的XPS图谱:(a)全谱:(b) U4f;(c) C1s;(d) O1s;(e) Ca2p;(f) P2p;(g) Fe2p

    Figure  12.  XPS maps of CHAP-γ-Fe2O3/BC: (a) full spectrum: (b) U4f; (c) C1s; (d) O1s; (e) Ca2p; (f) P2p; (g) Fe2p

    表  1  CHAP-γ-Fe2O3/BC吸附U(VI)的动力学参数

    Table  1.   Kinetic parameters of U(VI) adsorption by CHAP-γ-Fe2O3/BC

    C0/(mg·L−1) 5 10 15
    qe,exp/(mg·g−1) 48.02 90.027 125.9
    Pseudo-first-order model K1/min−1 0.049 0.189 0.039
    qe,cal/(mg·g−1) 8.218 0.711 1.082
    R 2 0.529 0.417 0.491
    Pseudo-second-order model K2/min−1 0.0077 0.0229 0.158
    qe,cal/(mg·g−1) 48.15 89.928 125.3
    R 2 0.999 1 0.999
    Intraparticle diffusion model Kd1/(mg·(g·min0.5)−1) 0.947 0.648 3.714
    C1 44.08 88.471 121.6
    R1 2 0.968 0.269 0.584
    Kd2/(mg·(g·min0.5)−1) 0.121 0.163 0.327
    C2 46.97 90.245 131.3
    R2 2 0.486 0.504 0.939
    Notes: qe,exp-calculated adsorption equilibrium; qe,cal-actual adsorption equilibrium; K1 and K2-first-order and second-order rate constants; Kd1, Kd2-particle diffusion constants; C-constant; R2-linear correlation coefficient.
    下载: 导出CSV

    表  2  CHAP-γ-Fe2O3/BC对U(VI)的吸附等温线拟合参数

    Table  2.   Adsorption isotherm fitting parameters of CHAP-γ-Fe2O3/BC for U(VI)

    T/K Langmuir model Freundlich model
    qmax/(mg·g−1) KL/(L·mg−1) R 2 KF/(L·mg−1) n R 2
    293 315.86 0.413 0.988 107.54 2.92 0.947
    303 324.415 0.456 0.991 137.30 3.70 0.928
    313 350.93 0.412 0.983 117.17 2.78 0.969
    Notes: qmax-maximum adsorption capacity; KL and KF-Langmuir and Freundlich adsorption equilibrium constants; n-Freundlich equation constant; R2-linear correlation coefficient.
    下载: 导出CSV

    表  4  不同材料对U(VI)吸附效果的比较

    Table  4.   Comparison of the adsorption effect of different materials on U (VI)

    Material T/K pH qmax/(mg·g−1) Reference
    Magnetic biochar 298 6 17.24 [30]
    CA-PO4 298 5.5 150.3 [31]
    HAP microspheres 298 3 199 [32]
    P-pFGO-7 298 4 266.7 [33]
    M-α-FeOOH 298 5 127.73 [24]
    CHAP-γ-Fe2O3/BC 303 6 324.4 This work
    Notes:CA-PO4—phosphorylated carbon aerogel; HAP—hydroxyapatite; P-pFGO-7—phytic acid functionalized graphene oxide; M-α-FeOOH—goethite (α-FeOOH) and Fe2+-modified magnetic goethite.
    下载: 导出CSV

    表  3  CHAP-γ-Fe2O3/BC吸附U(VI)的热力学参数

    Table  3.   Thermodynamic parameters of U(VI) adsorption by CHAP-γ-Fe2O3/BC

    T/K ΔG/(kJ·mol−1) ΔH/(kJ·mol−1) ΔS/(J·(mol·K)−1)
    393 −12.49 16.393 98.574
    303 −13.46
    313 −14.46
    Notes:ΔG—free energy; ΔH—enthalpy change; ΔS—entropy change.
    下载: 导出CSV
  • [1] AKASH S, SIVAPRAKASH B, RAJA V C V, et al. Remediation techniques for uranium removal from polluted environment - Review on methods, mechanism and toxicology[J]. Environ Pollut, 2022, 302: 119068. doi: 10.1016/j.envpol.2022.119068
    [2] CHEN T, YU K, DONG C, et al. Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives[J]. Coordination Chemistry Reviews, 2022, 467: 214615. doi: 10.1016/j.ccr.2022.214615
    [3] WU M-B, YE H, LIU S-C, et al. Wooden composite separators with ultrahigh uranium/vanadium selectivity and antibacterial property for capturing uranium from seawater[J]. Composites Communications, 2022, 32: 101159. doi: 10.1016/j.coco.2022.101159
    [4] WANG Y-Y, LIU Y-X, LU H-H, et al. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions[J]. Journal of Solid State Chemistry, 2018, 261: 53-61. doi: 10.1016/j.jssc.2018.02.010
    [5] ZHANG Q, LU L, LIANG M, et al. Efficient treatment of lead-containing wastewater using bagasse biochar modified via hydroxylapatite[J]. BioResources, 2022, 17(1): 1205-1231. doi: 10.15376/biores.17.1.1205-1231
    [6] 程鹏飞, 徐文总, 程传明, 等. 改性鸡蛋壳协效膨胀型阻燃剂对热塑性聚氨酯弹性体阻燃抑烟性能的影响[J]. 复合材料学报, 2022, 40: .

    CHENG P F, WU W Z, CHENG C M, et al. Effect of modified chicken eggshell and intumescent flame retarant on flame retardancy and smole suppression of thermoplastic polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40: (in Chinese).
    [7] WEN X, SHAO C-T, CHEN W, et al. Mesoporous carbonated hydroxyapatite/chitosan porous materials for removal of Pb(II) ions under flow conditions[J]. RSC Advances, 2016, 6(115): 113940-113950. doi: 10.1039/C6RA20448A
    [8] JUNG K-W, LEE S Y, CHOI J-W, et al. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media[J]. Chemical Engineering Journal, 2019, 369: 529-541. doi: 10.1016/j.cej.2019.03.102
    [9] ZENG R, TANG W, DING C, et al. Preparation of anionic-cationic co-substituted hydroxyapatite for heavy metal removal: Performance and mechanisms[J]. Journal of Solid State Chemistry, 2019, 280: 120960. doi: 10.1016/j.jssc.2019.120960
    [10] LIAO J, HE X, ZHANG Y, et al. The construction of magnetic hydroxyapatite-functionalized pig manure-derived biochar for the efficient uranium separation[J]. Chemical Engineering Journal, 2023, 457: 141367. doi: 10.1016/j.cej.2023.141367
    [11] 刘金香, 熊芬, 谢水波, 等. 纳米Fe3O4/黑曲霉磁性微球对 U(VI)的吸附性能及机制[J]. 复合材料学报, 2017, 34(12): 2826-2833.

    LIU Jinxiang, XIONG Fen, XIE shuibo, et al. Adsorption characteristic and mechanism of Uranium(VI) by nano Fe3O4/ Aspergillus niger magnetic microspheres[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2826-2833(in Chinese).
    [12] 张连科, 王洋, 王维大, 等. 磁性羟基磷灰石 /生物炭复合材料的制备及对 Pb2+ 的吸附性能[J]. 环境科学学报, 2018, 38(11): 4360-4370.

    ZHANG L K, WANG Y, WANG W D, et al. 2018. Preparation of magnetic hydroxyapatite /biochar composite and its adsorption behavior of Pb2+ and recycling performance[J]. Acta Scientiae Circumstantiae, 2018, 38(11): 4360-4370(in Chinese).
    [13] SUN Y, XIA R, ZHANG J, et al. Preparation of ferric oxide for efficient electrocatalytic oxidation of methylene blue[J]. Inorganic Chemistry Communications, 2022, 140: 109364. doi: 10.1016/j.inoche.2022.109364
    [14] DAI Z, ZHEN Y, SUN Y, et al. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal[J]. Chemical Engineering Journal, 2021, 415: 129002. doi: 10.1016/j.cej.2021.129002
    [15] SANG K, MEI D, WANG Y, et al. Amidoxime-functionalized zeolitic imidazolate frameworks with antimicrobial property for the removal of U (VI) from wastewater[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108344. doi: 10.1016/j.jece.2022.108344
    [16] AHMED W, NUNEZ-DELGADO A, MEHMOOD S, et al. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism[J]. Environ Res, 2021, 201: 111518. doi: 10.1016/j.envres.2021.111518
    [17] OOI C-H, LING Y P, PUNG S-Y, et al. Mesoporous hydroxyapatite derived from surfactant-templating system for p-Cresol adsorption: Physicochemical properties, formation process and adsorption performance[J]. Powder Technology, 2019, 342: 725-734. doi: 10.1016/j.powtec.2018.10.043
    [18] MA K, CUI H, ZHOU A, et al. Mesoporous hydroxyapatite: Synthesis in molecular self-assembly and adsorption properties[J]. Microporous and Mesoporous Materials, 2021, 323: 111164. doi: 10.1016/j.micromeso.2021.111164
    [19] ZHU S, IRSHAD M K, IBRAHIM M, et al. The distinctive role of nano-hydroxyapatite modified biochar for alleviation of cadmium and arsenic toxicity in aqueous system[J]. Journal of Water Process Engineering, 2022, 49: 103054. doi: 10.1016/j.jwpe.2022.103054
    [20] ZHOU C, SONG X, WANG Y, et al. The sorption and short-term immobilization of lead and cadmium by nano-hydroxyapatite/biochar in aqueous solution and soil[J]. Chemosphere, 2022, 286(Pt3): 131810.
    [21] ROUHANI M, ASHRAFI S D, TAGHAVI K, et al. Evaluation of tetracycline removal by adsorption method using magnetic iron oxide nanoparticles (Fe3O4) and clinoptilolite from aqueous solutions[J]. Journal of Molecular Liquids, 2022, 356: 119040. doi: 10.1016/j.molliq.2022.119040
    [22] CHAUDHARY M, SINGH L, REKHA P, et al. Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine[J]. Chemical Engineering Journal, 2019, 378: 122236. doi: 10.1016/j.cej.2019.122236
    [23] SHARMA M, CHAUDHARY K, KUMARI M, et al. Highly efficient, economic, and recyclable glutathione decorated magnetically separable nanocomposite for uranium(VI) adsorption from aqueous solution[J]. Materials Today Chemistry, 2020, 18: 100379. doi: 10.1016/j.mtchem.2020.100379
    [24] JIANG T-J, ZHANG X-W, XIE C, et al. Effective capture of aqueous uranium using a novel magnetic goethite: Properties and mechanism[J]. Journal of Solid State Chemistry, 2021, 300: 122236. doi: 10.1016/j.jssc.2021.122236
    [25] LIU L, LIU X, WANG D, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257: 120562. doi: 10.1016/j.jclepro.2020.120562
    [26] KAUR M, TEWATIA P, RATTAN G, et al. Diamidoximated cellulosic bioadsorbents from hemp stalks for elimination of uranium (VI) and textile waste in aqueous systems[J]. Journal of Hazardous Materials, 2021, 417: 126060. doi: 10.1016/j.jhazmat.2021.126060
    [27] LIU F, HUANG W, WANG S, et al. Investigation of adsorption properties and mechanism of uranium(VI) and europium(III) on magnetic amidoxime-functionalized MCM-41[J]. Applied Surface Science, 2022, 594: 153376. doi: 10.1016/j.apsusc.2022.153376
    [28] CHEN Z, WANG J, PU Z, et al. Synthesis of magnetic Fe3O4 /CFA composites for the efficient removal of U(VI) from wastewater[J]. Chemical Engineering Journal, 2017, 320: 448-457. doi: 10.1016/j.cej.2017.03.074
    [29] FAN Q H, HAO L M, WANG C L, et al. The adsorption behavior of (VI) on granite[J]. Environmental Science:Processes & Impacts, 2014, 16(3): 534-541.
    [30] AHMED W, MEHMOOD S, NUNEZ-DELGADO A, et al. Fabrication, characterization and U(VI) sorption properties of a novel biochar derived from Tribulus terrestris via two different approaches[J]. Sci Total Environ, 2021, 780: 146617. doi: 10.1016/j.scitotenv.2021.146617
    [31] ZHANG Z, DONG Z, WANG X, et al. Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies[J]. Chemical Engineering Journal, 2019, 370: 1376-1387. doi: 10.1016/j.cej.2019.04.012
    [32] WU Y, CHEN D, KONG L, et al. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres[J]. J Hazard Mater, 2019, 371: 397-405. doi: 10.1016/j.jhazmat.2019.02.110
    [33] LEI H, ZHOU D, TANG J, et al. Epoxy graphene oxide from a simple photo-Fenton reaction and its hybrid with phytic acid for enhancing U(VI) capture[J]. Sci Total Environ, 2020, 738: 140316. doi: 10.1016/j.scitotenv.2020.140316
    [34] WEI-RONG CUI F-F L, RUI-HAN XU, CHENG-RONG, ZHANG X-R C, RUN-HAN YAN, RU-PING LIANG, AND, QIU J-D. Regenerable Covalent Organic Frameworks for Photo-enhanced Uranium Adsorption from Seawater[J]. Angewandte Chemie 2020, 59: 17684-17690.
    [35] YANG S, LI Q, CHEN L, et al. Synergistic removal and reduction of U(VI) and Cr(VI) by Fe3S4 micro-crystal[J]. Chemical Engineering Journal, 2020, 385: 123909. doi: 10.1016/j.cej.2019.123909
    [36] GUO Y, GONG Z, LI C, et al. Efficient removal of uranium (VI) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite: A synthetic experimental and mechanism studies[J]. Chemical Engineering Journal, 2020, 392: 123682. doi: 10.1016/j.cej.2019.123682
  • 加载中
计量
  • 文章访问数:  110
  • HTML全文浏览量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-01-09
  • 录用日期:  2024-01-20
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回