Axial compressive behavior of CFRP uniformly wrapped coal in circular columns
-
摘要: 为扩大纤维增强树脂复合材料(FRP)加固组合结构的应用范围,改善煤矿采空区煤柱的承载能力和变形能力,对碳纤维增强树脂复合材料(CFRP)均匀约束煤圆柱的轴压性能进行了研究。试验结果表明:因CFRP的均匀约束,致使煤圆柱破坏时基本保持原状,断口位置约为0.25~0.5倍煤样高度范围,轴向变形能力至少提高1.5倍;单、双层CFRP约束煤圆柱的峰值强度分别提高了3.56~6.34倍、6.33~11.21倍;相同CFRP布层数时,随加载速率的增大,CFRP约束煤圆柱的强度增强比则逐渐降低,且CFRP层数越多,降低趋势越显著;CFRP层数对峰值强度的影响要比加载速率对峰值强度的影响更显著,加载速率对破坏时间的影响要比CFRP层数对破坏时间的影响更显著。获得了兼顾加载速率与CFRP层数的强度增强比三维可视化映射函数;建立了CFRP布约束煤圆柱的修正Richart强度分析模型,整体绝对误差评价指标表明模型性能优越,精度较高。Abstract: To facilitate the practical application of fiber-reinforced polymer (FRP) strengthened structures and improve the bearing capacity and deformation capacity of coal pillar in goaf, the mechanical performance of carbon fiber-reinforced polymer (CFRP) uniformly wrapped coal columns under axial compression was explored. Test results show that its state is basically unchanged and the fracture position is about 0.25-0.5 times the height of CFRP confined coal columns, and the axial deformation capacity is increased by at least 1.5 times when the coal columns are damaged since the uniform confinement of CFRP. The peak strength of single and double CFRP confined coal columns is increased by 3.56-6.34 times and 6.33-11.21 times, respectively. When the number of CFRP layers is the same, the strength enhancement ratio of CFRP confined coal columns decreases gradually with the increase of loading rate, and the decrease trend becomes more significant with the increase of the number of CFRP layers. The effect of CFRP layers on peak strength is more significant than that of loading rate, but it is obviously the opposite as for the failure time. It has been obtained that the 3D visualized mapping function of strength enhancement ratio considering loading rate and number of CFRP layers. The modified Richart strength model of CFRP confined coal columns has been established, and the index of integral absolute error shows that the model has good performance and higher precision.
-
Key words:
- CFRP /
- uniform confinement /
- confined coal columns /
- strength enhancement ratio /
- strength model
-
表 1 碳纤维增强聚合物(CFRP) 加固煤圆柱的主要试验结果
Table 1. Main test results of coal columns strengthened with carbon fiber-reinforced polymer (CFRP)
Group Specimen D/mm H/mm v/(mm·min−1) n/layers fpu/MPa fpc/MPa nf tf/s 1 A-CC-1 49.60 100.19 0.01 0 15.79 — — 2010.50 A-CC-2 49.70 100.32 0.01 0 16.14 — — — A-CC-3 49.70 100.48 0.01 0 25.20 — — — A-1CFRP-CC-1 49.44 100.37 0.01 1 — 118.12 6.203 12360.45 A-1CFRP-CC-2 49.62 100.52 0.01 1 — 123.28 6.474 — A-2CFRP-CC-1 49.63 100.40 0.01 2 — 207.08 10.874 29193.37 A-2CFRP-CC-2 49.64 100.50 0.01 2 — 220.00 11.553 — 2 B-CC-1 49.59 100.37 0.1 0 19.03 — — 259.73 B-CC-2 49.84 100.44 0.1 0 27.52 — — — B-CC-3 49.68 100.28 0.1 0 26.29 — — — B-1CFRP-CC-1 49.67 100.42 0.1 1 — 133.90 5.515 1110.39 B-1CFRP-CC-2 49.57 100.40 0.1 1 — 127.70 5.259 — B-2CFRP-CC-1 49.70 100.37 0.1 2 — 181.73 7.485 1852.65 B-2CFRP-CC-2 49.40 100.32 0.1 2 — 200.86 8.273 — 3 C-CC-1 49.55 100.54 1.0 0 20.95 — — 23.99 C-CC-2 49.63 100.39 1.0 0 23.99 — — — C-CC-3 49.61 100.24 1.0 0 31.94 — — — C-1CFRP-CC-1 49.64 100.29 1.0 1 — 163.25 6.370 105.44 C-1CFRP-CC-2 49.68 100.32 1.0 1 — 136.76 5.337 — C-2CFRP-CC-1 49.81 100.40 1.0 2 — 187.18 7.304 146.59 C-2CFRP-CC-2 49.83 100.32 1.0 2 — 186.96 7.296 — 4 D-CC-1 49.42 100.36 10.0 0 30.81 — — 2.98 D-CC-2 49.86 100.38 10.0 0 34.81 — — — D-CC-3 49.55 100.39 10.0 0 32.07 — — — D-1CFRP-CC-1 49.62 100.33 10.0 1 — 121.35 3.727 7.88 D-1CFRP-CC-2 49.64 100.47 10.0 1 — 110.40 3.390 — D-2CFRP-CC-1 49.89 100.37 10.0 2 — 189.72 5.826 12.36 D-2CFRP-CC-2 49.74 100.51 10.0 2 — 222.41 6.830 — Notes:In the specimen, A, B, C, D—Loading rates of 0.01, 0.1, 1.0 and 10 mm·min−1, respectively; Number before CFRP—CFRP layer number; CC—Coal column; The last number—Specimen number with the same parameters. D—Diameter of coal; H—Height of coal; v—Loading rate; n—Number of CFRP layers; fpu—Peak strength of unconfined coal columns; fpc—Peak strength of CFRP-confined coal columns; nf—Strength enhancement ratio of CFRP-confined coal columns; tf—Average failure time. 表 2 CFRP平均力学性能指标
Table 2. Average mechanical properties of CFRP sheets
Thickness/
(mm·ply−1)Tensile
strength/MPaUltimate
tensile strain/%Elastic
modulus/GPa0.167 918.07 1.94 47.54 表 3 代表性CFRP约束煤圆柱试样破坏
Table 3. Typical failure of CFRP confined coal column specimens
n/layer Loading rate v/(mm·min−1) 0.01 0.1 1.0 10.0 0 1 2 表 4 CFRP布约束煤圆柱强度修正模型参数
Table 4. Parameters of strength modified models of CFRP confined coal columns
Parameters Modified Richart Modified Hoek-Brown α β γ Ψ η θ Value 3.499 12.97 1.87 −1 292.77 0.22 R2 0.94 0.70 Note: α, β, γ, η, θ, Ψ—Undetermined parameter. -
[1] 纪孙航, 王文达, 鲜威. CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究[J]. 工程力学, 2021, 38(8):178-191. doi: 10.6052/j.issn.1000-4750.2020.08.0586JI Sunhang, WANG Wenda, XIAN Wei. Lateral impact behavior of CFRP-reinforced circular concrete-filled steel tubular members[J]. Engineering Mechanics,2021,38(8):178-191(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.08.0586 [2] YOUSEFI O, NARMASHIRI K, HEDAYAT A A, et al. Strengthening of corroded steel CHS columns under axial compressive loads using CFRP[J]. Journal of Constructional Steel Research,2021,178:106496. doi: 10.1016/j.jcsr.2020.106496 [3] ALTAEE M, CUNNINGHAM L S, GILLIE M. Practical application of CFRP strengthening to steel floor beams with web openings: A numerical investigation[J]. Journal of Constructional Steel Research,2019,155(4):395-408. [4] LI C X, KE L, HE J, et al. Effects of mechanical properties of adhesive and CFRP on the bond behavior in CFRP-strengthened steel structures[J]. Composite Structures,2019,211:163-174. doi: 10.1016/j.compstruct.2018.12.020 [5] LI J R, LU Y, LEE Y F. Debonding detection in CFRP-reinforced steel structures using anti-symmetrical guided waves[J]. Composite Structures,2020,253:112813. [6] YANG J Q, FENG P. Analysis-oriented models for FRP-confined concrete: 3D interpretation and general methodology[J]. Engineering Structures,2020,216:110749. doi: 10.1016/j.engstruct.2020.110749 [7] JAVAD S, JOAQUIM A O B, MOHAMMADALI R. Genera-lized analysis-oriented model of FRP confined concrete circular columns[J]. Composite Structures,2021,270:114026. doi: 10.1016/j.compstruct.2021.114026 [8] SCHOBER K U, HARTE A M, KLIGER R, et al. FRP reinforcement of timber structures[J]. Construction and Building Materials,2015,97:106-118. doi: 10.1016/j.conbuildmat.2015.06.020 [9] CORRADI M, VEMURY C M, EDMONDSON V, et al. Local FRP reinforcement of existing timber beams[J]. Compo-site Structures,2021,258:113263. [10] WANG Y L, CHEN G P, WAN B L, et al. Behavior and modeling of circular large rupture strain FRP-confined ice under axial compression[J]. Journal of Composites for Construction,2021,25(1):04020076. doi: 10.1061/(ASCE)CC.1943-5614.0001094 [11] WANG Y L, CHEN G P, WAN B L, et al. Behavior of circular ice-filled self-luminous FRP tubular stub columns under axial compression[J]. Construction and Building Materials,2020,232:117287. doi: 10.1016/j.conbuildmat.2019.117287 [12] ESTEVAN L, BAEZA F J, BRU D, et al. Stone masonry confinement with FRP and FRCM composites[J]. Construction and Building Materials,2020,237:117612. doi: 10.1016/j.conbuildmat.2019.117612 [13] THAMBOO J L. Performance of masonry columns confined with composites under axial compression: A state-of-the-art review[J]. Construction and Building Materials,2021,274:121791. doi: 10.1016/j.conbuildmat.2020.121791 [14] WANG Y, CAI G, LI Y, et al. Behavior of circular fiber-reinforced polymer-steel-confined concrete columns subjected to reversed cyclic loads: Experimental studies and finite-element analysis[J]. Journal of Structural Engineering,2019,145(9):04019085. [15] HUANG L, YU T, WANG Z Y, et al. Compressive behaviour of slender FRP-confined concrete-encased cross-shaped steel columns[J]. Construction and Building Materials,2020,258:120356. doi: 10.1016/j.conbuildmat.2020.120356 [16] WANG Y, CAI G, LARBI A S, et al. Monotonic axial compressive behaviour and confinement mechanism of square CFRP-steel tube confined concrete[J]. Engineering Structures,2020,217:110802. doi: 10.1016/j.engstruct.2020.110802 [17] KOTYNIA R, OLLER E, MARI A, et al. Efficiency of shear strengthening of RC beams with externally bonded FRP materials-State-of-the-art in the experimental tests[J]. Composite Structures,2021,267:113891. doi: 10.1016/j.compstruct.2021.113891 [18] GODAT A, HAMMAD F, CHAALLAL O, et al. State-of-the-art review of anchored FRP shear-strengthened RC beams: A study of influencing factors[J]. Composite Structures,2020,254:112767. doi: 10.1016/j.compstruct.2020.112767 [19] 姚未来, 江世永, 蔡涛, 等. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17):2890-2901. doi: 10.11896/cldb.18100193YAO Weilai, JIANG Shiyong, CAI Tao, et al. Research progress on creep response of FRP-strengthened reinforced concrete beams[J]. Materials Reports,2019,33(17):2890-2901(in Chinese). doi: 10.11896/cldb.18100193 [20] 黄丽华, 董媛媛. CFRP加固混凝土板动力性能有限元分析[J]. 建筑结构学报, 2015, 36(S2):183-187.HUANG Lihua, DONG Yuanyuan. Finite element analysis on dynamic properties of CFRP reinforced RC slabs[J]. Journal of Building Structures,2015,36(S2):183-187(in Chinese). [21] THACKER H, VORA T P. State-of-the-art review of FRP strengthened RC slabs[J]. International Journal for Scientific Research and Development,2015,3(10):78-85. [22] ALMUSTAFA M K, NEHDI M L. Machine learning prediction of structural response for FRP retrofitted RC slabs subjected to blast loading[J]. Engineering Structures,2021,244:112752. doi: 10.1016/j.engstruct.2021.112752 [23] KHUSRU S, FAWZIA S, THAMBIRATNAM D P, et al. Confined rubberised concrete tubular column for high-performance structures-Review[J]. Construction and Building Materials,2021,276:122216. doi: 10.1016/j.conbuildmat.2020.122216 [24] LAI M H, SONG W, QU X L, et al. A path dependent stress-strain model for concrete-filled-steel-tube column[J]. Engineering Structures,2020,211:110312. doi: 10.1016/j.engstruct.2020.110312 [25] SUN J Z, WEI Y M, WAGN Z Y, et al. A new composite column of FRP-steel-FRP clad tube filled with seawater sea-sand coral aggregate concrete: Concept and compressive behavior[J]. Construction and Building Materials,2021,301:124096. doi: 10.1016/j.conbuildmat.2021.124096 [26] 杨俊龙, 王吉忠, 卢世伟, 等. FRP非均匀约束海水海砂混凝土方柱轴压性能[J]. 复合材料学报, 2022, 39(6): 2801-2809.YANG Junlong, WANG Jizhong, LU Shiwei, et al. Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2801-2809(in Chinese). [27] ADAFER S, YOUCEF Y S, AMZIANE S. Cyclic behaviour of CFRP confined concrete under axial compression[J]. Construction and Building Materials,2022,340:127793. doi: 10.1016/j.conbuildmat.2022.127793 [28] 马超, 王作虎, 路德春, 等. CFRP加固地铁车站结构中柱地震损伤评价研究[J]. 岩土工程学报, 2020, 42(12):2249-2256.MA Chao, WANG Zuohu, LU Dechun, et al. Seismic damage evaluation of CFRP-strengthened columns in subway stations[J]. Chinese Journal of Geotechnical Engineering,2020,42(12):2249-2256(in Chinese). [29] 焦楚杰, 李松, 崔力仕, 等. CFRP约束钢管-活性粉末混凝土短柱轴压性能[J]. 复合材料学报, 2021, 38(2):439-448.JIAO Chujie, LI Song, CUI Lishi, et al. Axial compression behaviour of CFRP confined reactive power concrete filled steel tube stub columns[J]. Acta Materiae Compositae Sinica,2021,38(2):439-448(in Chinese). [30] 张景杭, 夏樟华, 姜绍飞, 等. BFRP模壳加固混凝土墩柱抗震性能试验研究[J]. 建筑结构学报, 2021, 42(8):84-94.ZHANG Jinghang, XIA Zhanghua, JIANG Shaofei, et al. Experimental study on seismic behavior of concrete pier columns strengthened with BFRP mould shell[J]. Journal of Building Structures,2021,42(8):84-94(in Chinese). [31] 王作虎, 杨菊, 崔宇强, 等. 碳纤维增强树脂复合材料加固钢筋混凝土柱抗震性能的尺寸效应试验[J]. 复合材料学报, 2020, 37(10):2645-2655.WANG Zuohu, YANG Ju, CUI Yuqiang, et al. Experiment on the size effect of seismic behavior for reinforced concrete columns strengthened by carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2020,37(10):2645-2655(in Chinese). [32] 张冰, 魏威, 冯贵森, 等. 纤维缠绕角度对GFRP约束混凝土短柱轴压性能的影响[J]. 建筑结构学报, 2019, 40(S1):192-199.ZHANG Bing, WEI Wei, FENG Guisen, et al. Influences of fiber angles on axial compressive behavior of GFRP-confined concrete stub column[J]. Journal of Building Structures,2019,40(S1):192-199(in Chinese). [33] 欧阳利军, 许峰, 高皖扬, 等. 玄武岩纤维布约束高温损伤混凝土方柱轴压力学性能试验[J]. 复合材料学报, 2019, 36(2):469-481.OUYANG Lijun, XU Feng, GAO Wanyang, et al. Axial compressive behavior of post-heated square concrete columns wrapped by BFRP sheets: An experimental investigation[J]. Acta Materiae Compositae Sinica,2019,36(2):469-481(in Chinese). [34] ZHANG C W, JIN Z X, FENG G R, et al. Double peaked stress-strain behavior and progressive failure mechanism of encased coal pillars under uniaxial compression[J]. Rock Mechanics and Rock Engineering,2020,53:3253-3266. doi: 10.1007/s00603-020-02101-7 [35] 陈绍杰, 张俊文, 尹大伟, 等. 充填墙提升煤柱性能机理与数值模拟研究[J]. 采矿与安全工程学报, 2017, 34(2):268-275.CHEN Shaojie, ZHANG Junwen, YIN Dawei, et al. Mecha-nism and numerical simulation of filling walls improving performance of coal pillar[J]. Journal of Mining and Safety Engineering,2017,34(2):268-275(in Chinese). [36] 张洪伟, 万志军, 张源, 等. 工作面顺序接续下综放沿空掘巷窄煤柱稳定性控制[J]. 煤炭学报, 2021, 46(4):1211-1219.ZHANG Hongwei, WAN Zhijun, ZHANG Yuan, et al. Stability control of narrow coal pillars in the fully-mecha-nized gob-side entry during sequenced top coal caving mining[J]. Journal of China Coal Society,2021,46(4):1211-1219(in Chinese). [37] 赵国贞, 马占国, 孙凯, 等. 小煤柱沿空掘巷围岩变形控制机理研究[J]. 采矿与安全工程学报, 2010, 27(4):517-521. doi: 10.3969/j.issn.1673-3363.2010.04.013ZHAO Guozhen, MA Zhanguo, SUN Kai, et al. Research on deformation controlling mechanism of the narrow pillar of roadway driving along next goaf[J]. Journal of Mining and Safety Engineering,2010,27(4):517-521(in Chinese). doi: 10.3969/j.issn.1673-3363.2010.04.013 [38] 王波, 谷长宛, 王军, 等. 对穿锚索加固作用下沿空掘巷留设煤柱承压性能试验研究[J]. 中国矿业大学学报, 2020, 49(2):262-270.WANG Bo, GU Changwan, WANG Jun, et al. Bearing capacity experimental study of coal pillar in the gob-side entry driving under the reinforcement of inflatable lock-type anchor[J]. Journal of China University of Mining and Technology,2020,49(2):262-270(in Chinese). [39] DAS A J, MANDAL P K, GHOSH C N, et al. Extraction of locked-up coal by strengthening of rib pillars with FRP-A comparative study through numerical modelling[J]. International Journal of Mining Science and Technology,2017,27(2):261-267. doi: 10.1016/j.ijmst.2017.01.024 [40] 刘洪林, 赵红超, 陈辉, 等. 预应力纤维布加固房柱式采煤工作面遗留煤柱的方法: 中国, ZL 201910632413.4[P]. 2021-07-09.LIU Honglin, ZHAO Hongchao, CHEN Hui, et al. Method of reinforcing residual coal pillars of room and pillar type coal face by prestressed fiber cloth: China, ZL 201910632413.4[P]. 2021-07-09(in Chinese). [41] 李庆文, 杨浩, 董芳红, 等. 一种快速加固小煤柱的FRP装置: 中国, ZL 201921478839.0[P]. 2020-04-28.LI Qingwen, YANG Hao, DONG Fanghong, et al. FRP device for quickly reinforcing small coal pillar: China, ZL 201921478839.0[P]. 2020-04-28(in Chinese). [42] International Society for Rock Mechanics. Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15(1):99-103. [43] 中华人民共和国国家标准编写组. 煤和岩石物理力学性质测定方法: GB/T 23561—2010[S]. 北京: 中国标准出版社, 2010.National Standards Compilation Group of People's Republic of China. Methods for determining the physical and mechanical properties of coal and rock: GB/T 23561—2010[S]. Beijing: Standards Press of China, 2010(in Chinese). [44] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.Standardization Administration of the People's Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: Standards Press of China, 2014(in Chinese). [45] XIAO W J, ZHANG D M, CAI Y, et al. Study on loading rate dependence of the coal failure process based on uniaxial compression test[J]. Pure and Applied Geophysics,2020,177:4925-4941. doi: 10.1007/s00024-020-02513-0 [46] 敬登虎. FRP约束混凝土的应力—应变模型及其在加固中的应用研究[D]. 南京: 东南大学, 2006.JING Denghu. Researches on model of stress-strain and applications in rehabilitation for concrete confined by FRP[D]. Nanjing: Southeast University, 2006(in Chinese). [47] LIM J C, OZBAKKALOGLU T. Lateral strain-to-axial strain relationship of confined concrete[J]. Journal of Structural Engineering,2015,141(5):04014141. doi: 10.1061/(ASCE)ST.1943-541X.0001094 [48] FERROTTO M F, FISCHER O, CAVALERI L. Analysis-oriented stress-strain model of CRFP-confined circular concrete columns with applied preload[J]. Materials and Structures,2018,51(2):1-16. [49] WU Y F, ZHOU Y W. Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP[J]. Journal of Composites for Construction,2010,14(2):175-184. doi: 10.1061/(ASCE)CC.1943-5614.0000062 [50] ZHANG Y, LU Z F, CAO Y G. Unified strength model based on the Hoek-Brown failure criterion for fibre-reinforced polymer-confined pre-damaged concrete columns with circular and square cross sections[J]. Journal of Central South University,2020,27(12):3807-3820. doi: 10.1007/s11771-020-4563-z -