留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多巴胺@氮化硼-碳纳米管/聚酰亚胺复合气凝胶太阳能蒸发器的制备与性能

汪日圆 陈浩然 陈芳琳 黎涛 鲁红典 杨伟

汪日圆, 陈浩然, 陈芳琳, 等. 多巴胺@氮化硼-碳纳米管/聚酰亚胺复合气凝胶太阳能蒸发器的制备与性能[J]. 复合材料学报, 2022, 40(0): 1-7
引用本文: 汪日圆, 陈浩然, 陈芳琳, 等. 多巴胺@氮化硼-碳纳米管/聚酰亚胺复合气凝胶太阳能蒸发器的制备与性能[J]. 复合材料学报, 2022, 40(0): 1-7
Riyuan WANG, Haoran CHEN, Fanglin CHEN, Tao LI, Hongdian LU, Wei YANG. Preparation and performance of dopamine@boron nitride-carbon nanotubes/polyimide composite aerogel solar-driven evaporator[J]. Acta Materiae Compositae Sinica.
Citation: Riyuan WANG, Haoran CHEN, Fanglin CHEN, Tao LI, Hongdian LU, Wei YANG. Preparation and performance of dopamine@boron nitride-carbon nanotubes/polyimide composite aerogel solar-driven evaporator[J]. Acta Materiae Compositae Sinica.

多巴胺@氮化硼-碳纳米管/聚酰亚胺复合气凝胶太阳能蒸发器的制备与性能

基金项目: 安徽省自然科学基金杰出青年科学基金 (2008085 J26)
详细信息
    通讯作者:

    鲁红典,博士,教授,硕士生导师,研究方向为低维纳米材料、聚合物复合材料 E-mail:luhdo@hfuu.edu.cn

  • 中图分类号: TB332

Preparation and performance of dopamine@boron nitride-carbon nanotubes/polyimide composite aerogel solar-driven evaporator

  • 摘要: 利用太阳能蒸发器进行水蒸发是生产清洁用水的重要途径之一。为了提高聚酰亚胺(PI)气凝胶的太阳能蒸发性能,本文通过添加多巴胺改性氮化硼(PDA@BN)和羟基化碳纳米管(CNT),采用四定向冷冻干燥和亚胺化工艺制备了PDA@BN-CNT/PI复合气凝胶。研究了PDA@BN和CNT的加入对气凝胶的形貌结构、润湿性能、太阳能蒸发性能的影响。结果表明,PDA@BN-CNT/PI复合气凝胶不仅具有良好的亲水性和太阳能光热转换能力,而且其独特的低弯曲度管状结构促进了水在气凝胶内部的运输,提高了太阳能蒸发性能。该气凝胶在2 kW/m2光照下的蒸发速率为1.95 kg/m2·h,并展现出优异的循环使用性能、化学稳定性和高效的污水净化能力。

     

  • 图  1  四定向冷冻实验装置示意图

    Figure  1.  Schematic illustration of the four-directional freezing experimental mold

    图  2  太阳能水蒸发系统示意图

    Figure  2.  Schematic illustration of solar-driven evaporation

    图  3  羟基化氮化硼(BNNS-OH)和多巴胺改性氮化硼(PDA@BN)的XRD图谱(a)、Raman光谱图(b)、XPS图谱(c)、TGA曲线(d)

    Figure  3.  Boron nitride hydroxyl (BNNS-OH) and dopamine-modified boron nitride (PDA@BN) characterized by XRD (a), Raman (b), XPS (c) and TGA (d)

    图  4  水在气凝胶表面的接触角(WCA)随时间的变化: (a) 聚酰亚胺(PI), (b) PDA@BN/PI, (c) PDA@BN-CNT/PI, (d) PDA@BN-CNT/PI-R

    Figure  4.  The variation of water contact angle (WCA) with time on aerogel surface: (a) polyimide (PI), (b) PDA@BN/PI, (c) PDA@BN-CNT/PI and (d) PDA@BN-CNT/PI-R

    图  5  气凝胶的SEM照片: (a) PI, (b) PDA@BN/PI, (c) PDA@BN-CNT/PI, (d) PDA@BN-CNT/PI-R

    Figure  5.  SEM images of aerogels: (a) PI, (b) PDA@BN/PI, (c) PDA@BN-CNT/PI, (d) PDA@BN-CNT/PI-R

    图  6  气凝胶的水运输性能对比:(a) PDA@BN-CNT/PI在12 s内的水运输照片,(b) PDA@BN-CNT/PI-R在24 s内的水运输照片

    Figure  6.  Comparison of water transport performance of aerogels: (a1-a4) The water transport status at different times in 12 seconds for PDA@BN-CNT/PI, (b1-b4) The water transport status at different times in 24 seconds for PDA@BN-CNT/PI-R

    图  7  气凝胶的太阳能蒸发性能: (a)气凝胶的表面温度随光照时间的变化; (b)水蒸发速率; (c) PDA@BN-CNT/PI气凝胶的循环性能; (d)化学稳定性

    Figure  7.  Solar-driven evaporation performance of aerogels: (a) Variation of surface temperatures with time; (b) solar-driven evaporation rate; (c) cycling performance and (d) chemical stability of PDA@BN-CNT/PI aerogel

    图  8  PI/PDA@BN/CNT气凝胶污水蒸发净化前后金属离子浓度对比图

    Figure  8.  Comparison of metal ion concentration before and after wastewater evaporation purification of PDA@BN-CNT/PI aerogel

    表  1  BNNS-OH和PDA@BN的表面组成

    Table  1.   Surface composition of BNNS-OH and PDA@BN

    SampleElement atomic content/at%
    BNOC
    BNNS-OH50.2740.434.195.11
    PDA@BN34.2828.267.4631.39
    下载: 导出CSV
  • [1] XIONG Z C, ZHU Y J, QIN D D, et al. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification[J]. Small,2018,14(50):1803387. doi: 10.1002/smll.201803387
    [2] XIONG Z C, ZHU Y J, WANG Z Y, et al. Tree-Inspired Ultralong Hydroxyapatite Nanowires-Based Multifunctional Aerogel with Vertically Aligned Channels for Continuous Flow Catalysis, Water Disinfection, and Solar Energy-Driven Water Purification[J]. Advanced Functional Materials,2021,2106978:1-14.
    [3] ZHAO F, ZHOU X, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13:489-495. doi: 10.1038/s41565-018-0097-z
    [4] FENG J, BAI B, YANG L, et al. Low-cost and facile hydrophilic amplification of raw corn straws for the applications of highly efficient interfacial solar steam generation[J]. Materials Chemistry and Physics,2021,271:124904. doi: 10.1016/j.matchemphys.2021.124904
    [5] 李 帅. 基于纤维素凝胶的太阳能水蒸发器的结构设计及其性能研究[D]. 桂林: 桂林理工大学, 2021.

    LI Shuai. Structure design and performance research of solar vapor generator based on cellulose gel[D]. Gui Lin: Guilin University of Technology, 2021(in Chinese).
    [6] 张超凡. 基于微纳米光热转换材料的高效太阳能水蒸发器件的设计与构筑[D] . 烟台: 鲁东大学, 2021.

    ZHANG Chaofan. Design and construction of high-efficient solar water evaporation device based on micro-nano photothermal conversion materials. Yan Tai: Ludong University, 2021(in Chinese).
    [7] 苏丽芬, 常展鹏, 宁玉盈等. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18):18024-18029. doi: 10.11896/cldb.20070057

    SU Lifen, CHANG Zhanpeng, NING Yuying, et al. Flexible Porous Polydimethylsiloxane Supported Nano Copper Sulfide for Efficient Solar Evaporation[J]. Materials Reports,2021,35(18):18024-18029(in Chinese). doi: 10.11896/cldb.20070057
    [8] WEN B Y, ZHANG X Y, YAN Y H, et al. Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation[J]. Desalination,2021,516:115228. doi: 10.1016/j.desal.2021.115228
    [9] YANG Y, ZHAO R, ZHANG T, et al. Graphene-based standalone solar energy converter for water desalination and purification[J]. Acs Nano,2018,12(1):829-835. doi: 10.1021/acsnano.7b08196
    [10] 钟铠, 张弛, 仲亚等. 石墨烯气凝胶复合材料制备及吸附性能的研究进展[J]. 工业水处理, 2019, 39(6):1-6. doi: 10.11894/iwt.2018-1098

    ZHONG Kai, ZHANG Chi, ZHONG Ya et al. Research progress in the preparation and adsorption capability of graphene aerogel composite materials[J]. Industrial Water Treatment,2019,39(6):1-6(in Chinese). doi: 10.11894/iwt.2018-1098
    [11] WANG N N, WANG H, WANG Y Y, et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation[J]. ACS Applied Materials & Interfaces,2019,11(43):40512-40523.
    [12] XU W, YUN X, LIU J, et al. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels[J]. ACS Nano,2019,13(7):7930-7938. doi: 10.1021/acsnano.9b02331
    [13] YU Z C, WU P Y. Biomimetic MXene- Polyvinyl Alcohol Composite Hydrogel with Vertically Aligned Channels for Highly Efficient Solar Steam Generation[J]. Advanced Materials Technologies,2020,5(6):2000065. doi: 10.1002/admt.202000065
    [14] HE J X, FAN Y K, XIAO C H, et al. Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior[J]. Composites Science and Technology,2021,204:108633. doi: 10.1016/j.compscitech.2020.108633
    [15] XIE D, HE M, LI X R, et al. Tree-inspired efficient solar evaporation and simultaneous in-situ purification of ultra-highly concentrated mixed volatile organic wastewater[J]. Nano Energy,2022,93:106802. doi: 10.1016/j.nanoen.2021.106802
    [16] WEI C J, ZHAG X H, MA S Y, et al. Ultra- robust vertically aligned three- dimensional (3 D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification[J]. Chemical Engineering Journal,2021,425:130118. doi: 10.1016/j.cej.2021.130118
    [17] DONG X Y, SI Y, CHEN C J, et al. Reed Leaves Inspired Silica Nanofibrous Aerogels with Parallel-Arranged Vessels for Salt-Resistant Solar Desalination[J]. ACS Nano,2021,15(7):12256-12266. doi: 10.1021/acsnano.1c04035
    [18] CHEN Y M, LI S J, LI X L, et al. Liquid Transport and Real-Time Dye Purification via Lotus Petiole-Inspired LongRange-Ordered Anisotropic Cellulose Nanofibril Aerogels[J]. ACS Nano,2021,15(12):20666-20677. doi: 10.1021/acsnano.1c10093
    [19] JIA W, ZHOU L, JIANG M, et al. Fabrication of polyimide/graphene nanosheet composite fibers via microwave-assisted imidization strategy[J]. RSC Advance,2021,11(52):32647-32653. doi: 10.1039/D1RA05044C
    [20] MIN C, LIU D, HE Z, et al. Novel polyimide nanocomposites enhanced by covalent modified graphene nanosheets based on friedel–crafts reaction[J]. Journal of Materials Science,2019,54:5484-5497. doi: 10.1007/s10853-018-03242-5
    [21] YANG W, WANG N N, PING P, et al. Novel 3 D network architectured hybrid aerogel comprising epoxy, graphene, and hydroxylated boron nitride nanosheets[J]. ACS Applied Materials & Interfaces,2018,10(46):40032-40043.
    [22] ROY A K, PARK B, LEE K S, et al. Boron nitride nanosheets decorated with silver nanoparticles through mussel-inspired chemistry of dopamine[J]. Nanotechnology,2014,25(44):445603. doi: 10.1088/0957-4484/25/44/445603
    [23] CAI W, GUO W W, PAN J, et al. Polydopamine-bridged synthesis of ternary h-BN@PDA@SnO2 as nanoenhancers for flame retardant and smoke suppression of epoxy composites[J]. Composites Part A:Applied Science & Manufacturing,2018,111:94-105.
    [24] 秦盼亮, 谢璠, 张楠等. AF-PDA@h-BN二元纸基复合材料导热绝缘性能的研究[J]. 中国造纸, 2018, 37(11):7-11. doi: 10.11980/j.issn.0254-508X.2018.11.002

    QIN Panliang, XIE Fan, ZHANG Nan et al. The study of thermal conductivity and insulation properties of AF-PDA@h-BN binary paper- based composite[J]. China Pulp & Paper,2018,37(11):7-11(in Chinese). doi: 10.11980/j.issn.0254-508X.2018.11.002
    [25] BAI C, WANG F, ZHAO Z, et al. Mussel-inspired facile fabrication of dense hexagonal boron nitride nanosheet-based coatings for anticorrosion and antifriction applications[J]. Materials Today Nano,2021,15:100129. doi: 10.1016/j.mtnano.2021.100129
    [26] 中华人民共和国卫生部、国家标准化委员会 . 生活饮用水卫生标准: GB/5749—2006[S]. 北京: 卫生部法监司, 2006.

    Ministry of Health of the People's Republic of China, Standardization Administration of The People's Republic of China. Standards for drinking water quality: GB/5749—2006[S]. Beijing: Department of Health Law Enforcement and Supervision, 2006.
  • 加载中
计量
  • 文章访问数:  92
  • HTML全文浏览量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 录用日期:  2022-03-26
  • 修回日期:  2022-03-26
  • 网络出版日期:  2022-04-18

目录

    /

    返回文章
    返回