留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征

靳权 宋恩鹏 蔡克

靳权, 宋恩鹏, 蔡克. 钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征[J]. 复合材料学报, 2022, 40(0): 1-15
引用本文: 靳权, 宋恩鹏, 蔡克. 钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征[J]. 复合材料学报, 2022, 40(0): 1-15
Quan JIN, Enpeng SON, Ke CAI. Synthesis and Characterization of the Barium Titanate-Potassium Sodium Niobate Relaxor Ferroelectric Energy Storage Ceramics[J]. Acta Materiae Compositae Sinica.
Citation: Quan JIN, Enpeng SON, Ke CAI. Synthesis and Characterization of the Barium Titanate-Potassium Sodium Niobate Relaxor Ferroelectric Energy Storage Ceramics[J]. Acta Materiae Compositae Sinica.

钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征

基金项目: 国家自然科学基金(21071115);陕西省自然科学基金重点项目(No. 2020 JZ-44);陕西省自然科学基金(2019 TD-007);
详细信息
    通讯作者:

    靳权,博士,工程师,研究方向为无铅储能陶瓷的合成、表征和储能性能 E-mail: jinquan@cnpc.com.cn

  • 中图分类号: O6

Synthesis and Characterization of the Barium Titanate-Potassium Sodium Niobate Relaxor Ferroelectric Energy Storage Ceramics

  • 摘要: 综合储能性能(充电能量密度、放电能量密度和储能效率)较低的是储能陶瓷领域亟待解决的关键科学问题。同时提高陶瓷的极化差(ΔP)和击穿场强(BDS),是提高陶瓷综合储能性能的重要方法。以BaTiO3(BT)为主晶相,K0.5Na0.5NbO3(KNN)为包覆剂、助烧剂和添加剂,合成了晶粒尺寸为100 nm和200 nm的BT-KNN陶瓷。结果表明,BT-KNN陶瓷具有明显的纳米畴、弛豫行为和介电温度稳定性,且兼具高ΔP和高BDS。相比晶粒尺寸为100 nm的BT-KNN陶瓷,晶粒尺寸为200 nm的BT-KNN陶瓷具有更加优异的综合储能性能,包括较高的充电能量密度W(2.50 J·cm−3)、放电能量密度Wrec(2.08 J·cm−3)和储能效率η(83.2%)。该研究可为高综合储能性能陶瓷的合成,提供一定的理论依据。

     

  • 图  1  BaTiO3@K0.5Na0.5NbO3 (BT@KNN)粉体XRD图

    Figure  1.  XRD patterns of the BaTiO3@K0.5Na0.5NbO3 (BT@KNN) powders

    图  2  粉体的TEM图:(a) BT@4 wt.%KNN-80 nm (b) BT@8 wt.%KNN-80 nm (c) BT@12 wt.%KNN-80 nm (d) BT@16 wt.%KNN-80 nm (e) BT@4 wt.%KNN-200 nm (f) BT@8 wt.%KNN-200 nm (g) BT@12 wt.%KNN-200 nm (h) BT@16 wt.%KNN-200 nm

    Figure  2.  TEM of the powders: (a) BT@4 wt.%KNN-80 nm (b) BT@8 wt.%KNN-80 nm (c) BT@12 wt.%KNN-80 nm (d) BT@16 wt.%KNN-80 nm (e) BT@4 wt.%KNN-200 nm (f) BT@8 wt.%KNN-200 nm (g) BT@12 wt.%KNN-200 nm (h) BT@16 wt.%KNN-200 nm

    图  3  BT@8 wt.%KNN-200 nm(a,b,b1-b6)和BT@8 wt.%KNN-80 nm(c,d,d1-d6)的HAADF和EDS;(a)和(c)为HAADF;(b)和(d)为EDS各元素叠加图;(b1-b6)和(d1-d6)为各元素的EDS图

    Figure  3.  HAADF and EDS images of the BT@8 wt.%KNN-200 nm(a, b, b1-b6) and the BT@8 wt.%KNN-80 nm(c, d, d1-d6), (a) and (c) the HAADF, (b) and (d) the superimposed images of each elements of EDS (b1-b6) and (d1-d6) the EDS images of each elements

    图  4  KNN干凝胶粉不同用量所得陶瓷的XRD图

    Figure  4.  XRD patterns of the ceramics with various amounts of the KNN xerogel powders

    图  5  KNN干凝胶粉不同用量所得陶瓷的SEM图:(a) BT-4 w.t%KNN (b) BT-6 wt.%KNN(c) BT-8 wt.%KNN (d) BT-10 wt.%KNN

    Figure  5.  SEM of the ceramics with various amounts of the KNN xerogel powders: (a) BT-4 w.t%KNN (b) BT-6 wt.%KNN (c) BT-8 wt.%KNN (d) BT-10 wt.%KNN

    图  6  BT-KNN陶瓷的介电常数(a)和介电损耗(b)

    Figure  6.  dielectric permittivity (a) and dielectric loss (b) of the BT-KNN ceramics

    图  7  (a)陶瓷的电滞回线;(b)储能性能对比;BT-8 wt.% KNN的PFM图(c)、相位(d)和纳米畴尺寸分布(e)

    Figure  7.  P-E hysteresis loops (a), energy storage performance comparison diagram (b) of the ceramics PFM (c) and phase (d) nanodomain size distribution(e) of the BT-8 wt.%KNN

    图  8  BT-KNN陶瓷的XRD图

    Figure  8.  XRD patterns of the BT-KNN ceramics

    图  9  BT-KNN陶瓷的SEM图:(a) BT-KNN (16∶0) (b) BT-KNN (12∶4) (c) BT-KNN (8∶8) (d) BT-KNN (4∶12) (e) BT-KNN (0∶16)(f) BT@KNN陶瓷晶粒尺寸和相对密度变化趋势图

    Figure  9.  SEM patterns of the BT-KNN ceramics∶ (a) BT-KNN (16∶0) (b) BT-KNN (12∶4) (c) BT-KNN (8∶8) (d) BT-KNN (4∶12) (e) BT-KNN (0∶16) (f) Trend of grain size and relative density of BT@KNN ceramics

    图  10  BT-KNN陶瓷: (a) 介电常数 (b) 介电损耗

    Figure  10.  BT-KNN ceramics (a)dielectric permittivity (b) dielectric loss

    图  11  (a) 陶瓷的电滞回线 (b) 储能性能对比(c)BT-KNN (8:8)的PFM振幅和(d)相位(e)纳米畴尺寸分布

    Figure  11.  (a) P-E hysteresis loops and (b) energy storage performance comparison diagram of the BT-KNN ceramics, (c) PFM amplitude and (d) phase (e) nanodomain size distribution of the sample of the BT-KNN (8:8)

    图  12  本工作与其他无铅陶瓷在最大施加电场下储能性能的对比情况:(a) Wrec (b) η

    Figure  12.  Comparison of Wrec (a) and η (b) between this work and the other lead-free ceramics at the maximum applied electric field

    表  1  粉体的组合方式

    Table  1.   Combination methods of the powders

    Combination
    methods
    KNN coating amount of the
    200 nm BT@KNN powders/wt.%
    KNN coating amount of the
    80 nm BT@KNN powders/wt.%
    BT-KNN (16:0)160
    BT-KNN (12:4)124
    BT-KNN (8:8)88
    BT-KNN (4:12)412
    BT-KNN (0:16)016
    下载: 导出CSV

    表  2  KNN干凝胶粉不同用量所得陶瓷参数汇总(1 kHz)

    Table  2.   Summary of parameters of the ceramics by the KNN xerogel powders with different amounts(1 kHz)

    Ceramics
    samples
    average grain size/nmrelative density
    /%
    εmaxεrtanδ
    BT-4wt.%KNN2929722521 9520.013
    BT-6wt.%KNN21696175316450.015
    BT-8wt.%KNN9395108810380.018
    BT-10wt.%KNN17293134212990.082
    Notes:εmax is the maximum dielectric permittivity,
    εr is the dielectric permittivity at room temperature, tanδ is the dielectric loss.
    下载: 导出CSV

    表  3  陶瓷储能参数汇总

    Table  3.   The energy storage parameters of the ceramics

    Ceramics
    samples
    ∆P/(µC·cm−2)BDS/(kV·cm−1)W/(J·cm−3)Wrec/(J·cm−3)η/%
    BT-4wt.%KNN15.421802.451.3956.7
    BT-6wt.%KNN14.622102.711.5456.8
    BT-8wt.%KNN11.212952.131.6577.5
    BT-10wt.%KNN7.921752.110.6932.7
    Notes:∆P is the polarization difference (ΔP=PmPr, Pm is the maximum polarization, Pr is the remanent polarization),
    BDS is the the breakdown field strength, W is the energy storage density, Wrec is the recoverable energy storage density, η is the ratio of Wrec to W.
    下载: 导出CSV

    表  4  BT-KNN陶瓷的参数(1 kHz)

    Table  4.   Parameters of the BT-KNN ceramics (1 kHz)

    Ceramics
    samples
    average grain size/nmrelative density/%εmaxεrtanδ
    BT-KNN (16∶0)12009724101 9740.013
    BT-KNN (12∶4)400962 0231 8430.015
    BT-KNN (8∶8)192961 82717600.017
    BT-KNN (4∶12)270·17094170116390.044
    BT-KNN (0∶16)280·16093159315570.077
    Notes:The average grain size 270·170 means that there is a bimodal distribution of the grain size, whose peaks are 270 nm and 170 nm; The average grain size 280·160 means that there is a bimodal distribution of the grain size, whose peaks are 280 nm and 160 nm.
    下载: 导出CSV

    表  5  BT-KNN陶瓷储能性能

    Table  5.   Energy storage parameters of the BT-KNN ceramics

    Ceramics
    samples
    ∆P/(µC·cm−2)BDS/(kV·cm−1)W/(J·cm−3)Wrec/(J·cm−3)η/%
    BT-KNN (16∶0)13.211342.150.8941.4
    BT-KNN (12∶4)17.101702.221.4565.3
    BT-KNN (8∶8)18.202502.502.0883.2
    BT-KNN (4∶12)15.502312.371.7975.5
    BT-KNN (0∶16)14.022102.281.4764.5
    下载: 导出CSV

    表  6  本工作与其他无铅陶瓷在最大施加电场下储能性能的对比表

    Table  6.   Comparison of the energy storage performances between this work and the other lead-free ceramics at the maximum applied electric field

    CompositionsBDS/(kV·cm−1)Wrec/(J·cm−3)η
    /%
    Ref.
    0.5 ST-0.5(BNT-BAN)1901.8777[1]
    0.88 BFBT-0.12 NBN4105.5784[2]
    0.8 NN-0.2 BST2884.5090[3]
    BNST-0.085355.6394[4]
    0.88 BST-0.12 BZN2251.6299.8[5]
    BST@SiO2−84001.6090.9[6]
    0.95 KNN-0.05 BZN
    0.95 K0.5Na0.5NbO3−0.05 Ba(Zn1/3Nb2/3)O3
    2204.8753[29]
    BaTiO3@Na0.5K0.5NbO3
    (8 wt.%)
    2111.9084.8[30]
    KNNC-12.75 SZ2301.4865[31]
    KNN1100.4326.7[32]
    0.85 KNN-0.15 BZZ3263.5086.8[33]
    0.975 KNN-0.025 LB3403.6074.2[34]
    0.8 KNN-0.2 SSN2952.0281.4[35]
    Ba0.6Sr0.34Ce0.04TiO32351.7585[36]
    BaTi0.89Sn0.11O3250.0785[37]
    0.7(BT-BMN)-0.3 NBT2002.9185.5[38]
    BT-KNN-S32502.0883.2This work
    Notes:0.5 ST-0.5(BNT-BAN): 0.5 SrTiO3−0.5(0.95 Bi0.5Na0.5TiO3−0.05 BaAl0.5Nb0.5O3),
    0.88 BFBT-0.12 NBN: 0.88(0.67 BiFeO3−0.33 BaTiO3)-0.12 Na0.73Bi0.09NbO3, 0.8 NN-0.2 BST: 0.8 NaNbO3−0.2 Sr0.7Bi0.2TiO3, BNST-0.08: 0.75 Bi0.58Na0.42TiO3−0.25 SrTiO3, 0.88 BST-0.12 BZN: 0.88(Ba0.8Sr0.2)TiO3−0.12 Bi(Zn2/3Nb1/3)O3, BST@SiO2−8: Ba0.4Sr0.6TiO3@SiO2(8 mol%), 0.95 KNN-0.05 BZN: 0.95 K0.5Na0.5NbO3−0.05 Ba(Zn1/3Nb2/3)O3, BT@KNN-8=BaTiO3@Na0.5K0.5NbO3(8 wt.%) , KNNC-12.75 SZ: 0.8725 K0.5Na0.5NbO3−0.1275 SrZrO3, KNN: K0.5Na0.5NbO3, 0.85 KNN-0.15 BZZ: 0.8 K0.5Na0.5NbO3−0.15 Bi(Zn0.5Zr0.5)O3, 0.975 KNN-0.025 LB: 0.975 K0.5Na0.5NbO3−0.025 LaBiO3, 0.8 KNN-0.2 SSN: 0.8 K0.5Na0.5NbO33-0.2 Sr(Sc0.5Nb0.5)O3, BT-BMN-NBT: 0.7[0.85 BaTiO3−0.15 Bi(Mg2/3Nb1/3)O3]-0.3 Na0.5Bi0.5TiO3.
    下载: 导出CSV
  • [1] YAN F, YANG H B, LIN Y, et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications[J]. Inorganic Chemistry,2017,56(21):13510-13516. doi: 10.1021/acs.inorgchem.7b02181
    [2] YAN F, SHI Y J, ZHOU X F, et al. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications[J]. Chemical Engineering Journal,2020,417(1):127945.1-127945.9.
    [3] WEI T, LIU K, FAN P Y, et al. Novel NaNbO3-Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties[J]. Ceramics International,2021,47(3):3713-3719. doi: 10.1016/j.ceramint.2020.09.228
    [4] YAN F, HUANG K W, JIANG T, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering[J]. Energy Storage Materials,2020,30:392-400. doi: 10.1016/j.ensm.2020.05.026
    [5] ZHANG L, PANG L X, LI W B, et al. Extreme high energy storage efficiency in perovskite structured (1-x)(Ba0.8Sr0.2)TiO3-xBi(Zn2/3Nb1/3)O3 (0.04≤x≤0.16) ceramics[J]. Journal of the European Ceramic Society,2020,40(8):3343-3347. doi: 10.1016/j.jeurceramsoc.2020.03.015
    [6] HUANG Y H, WU Y J, LIU B, et al. From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering[J]. Journal of Materials Chemistry A,2018,6(10):4477-4484. doi: 10.1039/C7TA10821D
    [7] CAI Z M, WANG X H, HONG W, et al. Grain-size-dependent dielectric properties in nanograin ferroelectrics[J]. Journal of the American Ceramic Society,2018,101(12):5487-5496. doi: 10.1111/jace.15803
    [8] LIU B B, WANG X H, ZHANG R X, et al. Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics[J]. Journal of the American Ceramic Society,2017,100(8):3599-3607. doi: 10.1111/jace.14802
    [9] ZHANG C, CHEN Y, ZHOU M X, et al. Achieving ultrahigh dielectric breakdown strength in MgO-based ceramics by composite structure design[J]. Journal of Materials Chemistry C,2019,7(26):8120-8130. doi: 10.1039/C9TC02197C
    [10] LI Y, SUN N N, LI X W, et al. Multiple electrical response and enhanced energy storage induced by unusual coexistent-phase structure in relaxor ferroelectric ceramics[J]. Acta Materialia,2018,146:202-210. doi: 10.1016/j.actamat.2017.12.048
    [11] GAO P, LIU Z H, ZHANG N, et al. New antiferroelectric perovskite system with ultrahigh energy storage performance at low electric field[J]. Chemistry of Materials,2019,31(3):979-990. doi: 10.1021/acs.chemmater.8b04470
    [12] YE J M, WANG G S, ZHOU M X, et al. Excellent comprehensive energy storage properties in novel lead-free NaNbO3-based ceramics for dielectric capacitor applications[J]. Journal of Materials Chemistry C,2019,7(19):5639-5645. doi: 10.1039/C9TC01414D
    [13] WANG G, LI J L, ZHANG X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity[J]. Energy & Environmental Science,2019,12(2):582-588.
    [14] QI H, XIE A W, TIAN A, et al. Superior energy-storage capacitors with simultaneously giant energy density and effciency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics[J]. Advanced Energy Materials,2020,10(6):1903338.1-1903338.8.
    [15] YAN Z N, ZHANG D, ZHOU X F, et al. Silver niobate based lead-free ceramics with high energy storage density[J]. Journal of Materials Chemistry A,2019,7(17):10702-10711. doi: 10.1039/C9TA00995G
    [16] LIU G, LI Y, SHI M Q, et al. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability[J]. Ceramics International,2019,45(15):19189-19196. doi: 10.1016/j.ceramint.2019.06.166
    [17] LI Q, LI M Y, WANG C, et al. Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modifed (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics[J]. Ceramics International,2019,45(16):19822-19828. doi: 10.1016/j.ceramint.2019.06.237
    [18] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science,2019,365(6453):578-582. doi: 10.1126/science.aaw8109
    [19] PAN H, MA J, MA J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering[J]. Nature Communications,2018,9:1813.1-1813.8.
    [20] SUN Z X, MA C R, LIU M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering[J]. Advanced Materials,2017,29(5):1604427.1-1604427.6.
    [21] LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials,2018,17:349-354. doi: 10.1038/s41563-018-0034-4
    [22] SHVARTSMAN V V, LUPASCU D C. Lead-free relaxor ferroelectrics[J]. Journal of the American Ceramic Society,2012,95(1):1-26. doi: 10.1111/j.1551-2916.2011.04952.x
    [23] JO W, SCHAAB S, SAPPER E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3[J]. Journal of Applied Physics,2011,110:74106.1-74106.9.
    [24] HIRATA Y, FUJITA H, SHIMONOSONO T. Compressive mechanical properties of partially sintered porous alumina of bimodal particle size system[J]. Ceramics International,2017,43(2):1895-1903. doi: 10.1016/j.ceramint.2016.10.149
    [25] OH J W, SEONG Y J, SHIN D S, et al. Investigation and two-stage modeling of sintering behavior of nano/micro-bimodal powders[J]. Powder Technology,2019,352(15):42-52.
    [26] XU H Y, ZOU J, WANG W M, et al. Densification mechanism and microstructure characteristics of nano- and micro- crystalline alumina by high-pressure and low temperature sintering[J]. Journal of the European Ceramic Society,2021,41(1):635-645. doi: 10.1016/j.jeurceramsoc.2020.08.018
    [27] ZHAI X Y, CHEN Y J, MA Y Q, et al. A new strategy of binary-size particles model for fabricating fine grain, high density and low resistivity ITO target[J]. Ceramics International,2020,46(9):13660-13668. doi: 10.1016/j.ceramint.2020.02.152
    [28] YANG Y, JI Y, FANG M X, et al. Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivit[J]. Physical Review Letters,2019,123(13):137601.1-137601.5.
    [29] CHEN B, TIAN Y, LU J B, et al. Ultrahigh storage density achieved with (1-x)KNN-xBZN ceramics[J]. Journal of the European Ceramic Society,2020,40(8):2936-2944. doi: 10.1016/j.jeurceramsoc.2020.03.003
    [30] JIN Q, ZHAO L L, CUI B, et al. Enhanced energy storage properties in lead-free BaTiO3@Na0.5K0.5NbO3 nano-ceramics with nanodomains via a core-shell structural design[J]. Journal of Materials Chemistry C,2020,8(15):5248-5258. doi: 10.1039/D0TC00179A
    [31] HUI K Z, CHEN L L, CEN Z Y, et al. KNN based high dielectric constant X9 R ceramics with fine grain structure and energy storage ability[J]. Journal of the American Ceramic Society,2021,104(11):5815-5825. doi: 10.1111/jace.17970
    [32] CHEN B, LIANG P F, WU D, et al. High-efficiency synthesis of high-performance K0.5Na0.5NbO3 ceramics[J]. Powder Technology,2019,346(15):248-255.
    [33] ZHANG M, YANG H B, LI D, et al. Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics[J]. Journal of Materials Chemistry C,2020,8(26):8777-8785. doi: 10.1039/D0TC01711F
    [34] XING J, HUANG Y L, XU Q, et al. Realizing high comprehensive energy storage and ultrahigh hardness in lead-free ceramics[J]. ACS Applied Materials & Interfaces,2021,13(24):28472-28483.
    [35] QU B Y, DU H L, YANG Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability[J]. Journal of Materials Chemistry C,2016,4(9):1795-1803. doi: 10.1039/C5TC04005A
    [36] LI Y M, BIAN J J. Effects of reoxidation on the dielectric and energy storage properties of Ce-doped (Ba, Sr)TiO3 ceramics prepared by hot-pressed sintering[J]. Journal of the European Ceramic Society,2020,40(15):5441-5449. doi: 10.1016/j.jeurceramsoc.2020.06.076
    [37] MERSELMIZ S, HANANI Z, MEZZANE D, et al. High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0. 11O3 ceramic[J]. Ceramics International,2020,46(15):23867-23876. doi: 10.1016/j.ceramint.2020.06.163
    [38] WANG T, LIU J Q, KONG L, et al. Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics[J]. Ceramics International,2020,46(16):25392-25398. doi: 10.1016/j.ceramint.2020.07.007
    [39] YANG Z T, DU H L, QU S B, et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics[J]. Journal of Materials Chemistry A,2016,4(36):13778-13785. doi: 10.1039/C6TA04107H
    [40] YANG Z T, GAO F, DU H L, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties[J]. Nano Energy,2019,58:768-777. doi: 10.1016/j.nanoen.2019.02.003
    [41] YAN X D, ZHENG M P, GAO X, et al. High-performance lead-free ferroelectric BZT-BCT and its application in energy fields[J]. Journal of Materials Chemistry C,2020,8(39):13530-13556. doi: 10.1039/D0TC03461D
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 录用日期:  2022-04-26
  • 修回日期:  2022-04-20
  • 网络出版日期:  2022-05-14

目录

    /

    返回文章
    返回