留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征

靳权 宋恩鹏 蔡克

靳权, 宋恩鹏, 蔡克. 钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征[J]. 复合材料学报, 2023, 40(4): 2140-2154. doi: 10.13801/j.cnki.fhclxb.20220509.002
引用本文: 靳权, 宋恩鹏, 蔡克. 钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征[J]. 复合材料学报, 2023, 40(4): 2140-2154. doi: 10.13801/j.cnki.fhclxb.20220509.002
JIN Quan, SONG Enpeng, CAI Ke. Synthesis and characterization of the barium titanate-potassium sodium niobate relaxor ferroelectric energy storage ceramics[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2140-2154. doi: 10.13801/j.cnki.fhclxb.20220509.002
Citation: JIN Quan, SONG Enpeng, CAI Ke. Synthesis and characterization of the barium titanate-potassium sodium niobate relaxor ferroelectric energy storage ceramics[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2140-2154. doi: 10.13801/j.cnki.fhclxb.20220509.002

钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征

doi: 10.13801/j.cnki.fhclxb.20220509.002
基金项目: 国家自然科学基金(21071115);陕西省自然科学基金重点项目(2020JZ-44);陕西省自然科学基金(2019TD-007)
详细信息
    通讯作者:

    靳权,博士,工程师,研究方向为无铅储能陶瓷的合成、表征和储能性能 E-mail: jinquan@cnpc.com.cn

  • 中图分类号: O6

Synthesis and characterization of the barium titanate-potassium sodium niobate relaxor ferroelectric energy storage ceramics

Funds: National Natural Science Foundation of China (21071115); Key Program of Shaanxi Natural Science Foundation (2020JZ-44); Key Science and Technology Innovation Team of Shaanxi Province (2019TD-007)
  • 摘要: 综合储能性能(充电能量密度、放电能量密度和储能效率)较低是储能陶瓷领域亟待解决的关键科学问题。同时提高陶瓷的极化差(ΔP)和击穿场强(BDS),是提高陶瓷综合储能性能的重要方法。以BaTiO3(BT)为主晶相,K0.5Na0.5NbO3(KNN)为包覆剂、助烧剂和添加剂,合成了晶粒尺寸为100 nm和200 nm的BT-KNN陶瓷。结果表明:BT-KNN陶瓷具有明显的纳米畴、弛豫行为和介电温度稳定性,且兼具高ΔP和高BDS。相比晶粒尺寸为100 nm的BT-KNN陶瓷,晶粒尺寸为200 nm的BT-KNN陶瓷具有更加优异的综合储能性能,包括较高的充电能量密度W (2.50 J·cm−3)、放电能量密度Wrec (2.08 J·cm−3)和储能效率η (83.2%)。该研究可为高综合储能性能陶瓷的合成提供一定的理论依据。

     

  • 图  1  BaTiO3@K0.5Na0.5NbO3 (BT@KNN)粉体XRD图谱

    Figure  1.  XRD patterns of the BaTiO3@K0.5Na0.5NbO3 (BT@KNN) powders

    图  2  粉体的TEM图像:(a) BT@4wt%KNN-80 nm;(b) BT@8wt%KNN-80 nm;(c) BT@12wt%KNN-80 nm;(d) BT@16wt%KNN-80 nm;(e) BT@4wt%KNN-200 nm;(f) BT@8wt%KNN-200 nm;(g) BT@12wt%KNN-200 nm;(h) BT@16wt%KNN-200 nm

    Figure  2.  TEM images of the powders: (a) BT@4wt%KNN-80 nm; (b) BT@8wt%KNN-80 nm; (c) BT@12wt%KNN-80 nm; (d) BT@16wt%KNN-80 nm; (e) BT@4wt%KNN-200 nm; (f) BT@8wt%KNN-200 nm; (g) BT@12wt%KNN-200 nm; (h) BT@16wt%KNN-200 nm

    图  3  BT@8wt%KNN-200 nm ((a)、(b)、(b1)~(b6))和BT@8wt%KNN-80 nm ((c)、(d)、(d1)~(d6))的高角度环形暗场像(HAADF)和EDS图像 (((a)、(c)) HAADF图像;((b)、(d)) EDS各元素叠加图像;((b1)~(b6)、(d1)~(d6)) 各元素的EDS图像)

    Figure  3.  High-angle annular dark field (HAADF) and EDS images of the BT@8wt%KNN-200 nm ((a), (b), (b1)-(b6)) and the BT@8wt%KNN-80 nm ((c), (d), (d1)-(d6))(((a), (c)) HAADF images; ((b), (d)) Superimposed EDS images of each elements; ((b1)-(b6), (d1)-(d6)) EDS images of each elements)

    图  4  KNN干凝胶粉不同用量所得陶瓷的XRD图谱

    Figure  4.  XRD patterns of the ceramics with various amounts of the KNN xerogel powders

    图  5  KNN干凝胶粉不同用量所得陶瓷的SEM图像(内插图为粒径分布):(a) BT-4wt%KNN;(b) BT-6wt%KNN;(c) BT-8wt%KNN;(d) BT-10wt%KNN

    Figure  5.  SEM images of the ceramics with various amounts of the KNN xerogel powders (Inset: Particle size distribution): (a) BT-4wt%KNN; (b) BT-6wt%KNN; (c) BT-8wt%KNN; (d) BT-10wt%KNN

    图  6  BT-KNN陶瓷的介电常数(a)和介电损耗(b)

    Figure  6.  Dielectric permittivity (a) and dielectric loss (b) of the BT-KNN ceramics

    图  7  (a) 陶瓷的电滞回线;(b) 陶瓷的储能性能对比;BT-8wt% KNN的压电响应力显微镜(PFM)图像(c)、相位图像(d)和纳米畴尺寸分布(e)

    Figure  7.  (a) Polarization-electric field (P-E) hysteresis loops of the ceramics; (b) Energy storage performance comparison diagram of the ceramics; Piezoresponse scanning force microscopy (PFM) (c), phase (d) and nanodomain size distribution (e) of the BT-8wt%KNN

    W—Energy storage density; Wrec—Recoverable energy storage density; η—Ratio of Wrec to W; Pm—Maximum polarization

    图  8  BT-KNN陶瓷的XRD图谱

    Figure  8.  XRD patterns of the BT-KNN ceramics

    图  9  BT-KNN陶瓷的SEM图像(内插图为粒径分布):(a) BT-KNN(16∶0);(b) BT-KNN(12∶4);(c) BT-KNN(8∶8);(d) BT-KNN(4∶12);(e) BT-KNN(0∶16);(f) BT@KNN陶瓷晶粒尺寸和相对密度变化趋势图

    Figure  9.  SEM images of the BT-KNN ceramics (Inset: Particle size distribution): (a) BT-KNN(16∶0); (b) BT-KNN(12∶4); (c) BT-KNN(8∶8); (d) BT-KNN(4∶12); (e) BT-KNN(0∶16); (f) Trend of grain size and relative density of BT@KNN ceramics

    图  10  BT-KNN陶瓷的介电常数(a)和介电损耗(b)

    Figure  10.  Dielectric permittivity (a) and dielectric loss (b) of the BT-KNN ceramics

    图  11  (a) BT-KNN陶瓷的电滞回线;(b) BT-KNN陶瓷储能性能对比;BT-KNN(8∶8)的PFM振幅(c)、相位(d)和纳米畴尺寸分布(e)

    Figure  11.  (a) P-E hysteresis loops of the BT-KNN ceramics; (b) Energy storage performance comparison diagram of the BT-KNN ceramics; PFM amplitude (c), phase (d) and nanodomain size distribution (e) of the BT-KNN(8∶8)

    图  12  本工作与其他无铅陶瓷[1-6, 29-38]在最大施加电场下 Wrec (a) 和η (b)的对比

    Figure  12.  Comparison of Wrec (a) and η (b) between this work and the other lead-free ceramics[1-6, 29-38] at the maximum applied electric field

    NBT—Bi0.5Na0.5TiO3; ST—SrTiO3; BF—BiFeO3; NN—NaNbO3

    表  1  80 nm和200 nm BaTiO3(BT)@K0.5Na0.5NbO3(KNN)粉体编号、包覆量和尺寸

    Table  1.   Abbreviation, coating amounts and sizes of the 80 nm and 200 nm BT@KNN powders

    Powder sample KNN coating
    amount/wt%
    Diameter/nm
    BT@4wt%KNN-80 nm 4 80
    BT@8wt%KNN-80 nm 8 80
    BT@12wt%KNN-80 nm 12 80
    BT@16wt%KNN-80 nm 16 80
    BT@4wt%KNN-200 nm 4 200
    BT@8wt%KNN-200 nm 8 200
    BT@12wt%KNN-200 nm 12 200
    BT@16wt%KNN-200 nm 16 200
    下载: 导出CSV

    表  2  BT-KNN陶瓷编号和掺杂量

    Table  2.   Abbreviation and doping amount of the BT-KNN ceramics

    Ceramic sample BT-KNN content/wt%
    BT-4wt%KNN 4
    BT-6wt%KNN 6
    BT-8wt%KNN 8
    BT-10wt%KNN 10
    下载: 导出CSV

    表  3  粉体的组合方式

    Table  3.   Combination methods of the powders

    Combination methodsKNN coating amount of the 200 nm BT@KNN powders/wt%KNN coating amount of the 80 nm BT@KNN powders/wt%
    BT-KNN(16∶0)16 0
    BT-KNN(12∶4)12 4
    BT-KNN(8∶8) 8 8
    BT-KNN(4∶12) 412
    BT-KNN(0∶16) 016
    下载: 导出CSV

    表  4  KNN干凝胶粉不同用量所得陶瓷参数汇总(1 kHz)

    Table  4.   Summary of parameters of the ceramics by the KNN xerogel powders with different amounts (1 kHz)

    Ceramics samplesAverage grain size/nmRelative density
    /%
    εmaxεrtanδ
    BT-4wt%KNN2929722521 9520.013
    BT-6wt%KNN21696175316450.015
    BT-8wt%KNN 9395108810380.018
    BT-10wt%KNN17293134212990.082
    Notes: εmax—Maximum dielectric permittivity; εr—Dielectric permittivity at room temperature; tanδ—Dielectric loss.
    下载: 导出CSV

    表  5  陶瓷储能参数汇总

    Table  5.   Energy storage parameters of the ceramics

    Ceramics sampleP/(µC·cm−2)BDS/(kV·cm−1)W/(J·cm−3)Wrec/(J·cm−3)η/%
    BT-4wt%KNN15.421802.451.3956.7
    BT-6wt%KNN14.622102.711.5456.8
    BT-8wt%KNN11.212952.131.6577.5
    BT-10wt%KNN 7.921752.110.6932.7
    Notes: ∆P—Polarization difference (ΔP=PmPr, Pm—Maximum polarization, Pr—Remanent polarization); BDS—Breakdown field strength.
    下载: 导出CSV

    表  6  BT-KNN陶瓷的参数(1 kHz)

    Table  6.   Parameters of the BT-KNN ceramics (1 kHz)

    Ceramics
    sample
    Average grain size/nmRelative density/%εmaxεrtanδ
    BT-KNN(16∶0)12009724101 9740.013
    BT-KNN(12∶4) 400962 0231 8430.015
    BT-KNN(8∶8) 192961 82717600.017
    BT-KNN(4∶12)270·17094170116390.044
    BT-KNN(0∶16)280·16093159315570.077
    Notes: The average grain size of 270·170 means that there is a bimodal distribution of the grain size, whose peaks are 270 nm and 170 nm; The average grain size 280·160 means that there is a bimodal distribution of the grain size, whose peaks are 280 nm and 160 nm.
    下载: 导出CSV

    表  7  BT-KNN陶瓷储能性能

    Table  7.   Energy storage parameters of the BT-KNN ceramics

    Ceramics sampleP/(µC·cm−2)BDS/(kV·cm−1)W/(J·cm−3)Wrec/(J·cm−3)η/%
    BT-KNN(16∶0)13.211342.150.8941.4
    BT-KNN(12∶4)17.101702.221.4565.3
    BT-KNN(8∶8)18.202502.502.0883.2
    BT-KNN(4∶12)15.502312.371.7975.5
    BT-KNN(0∶16)14.022102.281.4764.5
    下载: 导出CSV

    表  8  本工作与其他无铅陶瓷在最大施加电场下储能性能的对比

    Table  8.   Comparison of the energy storage performances between this work and the other lead-free ceramics at the maximum applied electric field

    CompositionBDS/(kV·cm−1)Wrec/(J·cm−3)η
    /%
    Ref.
    0.5ST-0.5(BNT-BAN)1901.8777[1]
    0.88BFBT-0.12NBN4105.5784[2]
    0.8NN-0.2BST2884.5090[3]
    BNST-0.085355.6394[4]
    0.88BST-0.12BZN2251.6299.8[5]
    BST@SiO2-84001.6090.9[6]
    0.95KNN-0.05BZN2204.8753[29]
    BaTiO3@Na0.5K0.5NbO3
    (8wt%)
    2111.9084.8[30]
    KNNC-12.75SZ2301.4865[31]
    KNN1100.4326.7[32]
    0.85KNN-0.15BZZ3263.5086.8[33]
    0.975KNN-0.025LB3403.6074.2[34]
    0.8KNN-0.2SSN2952.0281.4[35]
    Ba0.6Sr0.34Ce0.04TiO32351.7585[36]
    BaTi0.89Sn0.11O3 250.0785[37]
    0.7(BT-BMN)-0.3NBT2002.9185.5[38]
    BT-KNN-S32502.0883.2This work
    Notes:0.5ST-0.5(BNT-BAN)—0.5SrTiO3-0.5(0.95Bi0.5Na0.5TiO3-0.05BaAl0.5Nb0.5O3); 0.88BFBT-0.12NBN—0.88(0.67BiFeO3-0.33BaTiO3)-0.12Na0.73Bi0.09NbO3; 0.8NN-0.2BST—0.8NaNbO3-0.2Sr0.7Bi0.2TiO3; BNST-0.08—0.75Bi0.58Na0.42TiO3-0.25SrTiO3; 0.88BST-0.12BZN—0.88(Ba0.8Sr0.2)TiO3-0.12Bi(Zn2/3Nb1/3)O3; BST@SiO2-8—Ba0.4Sr0.6TiO3@SiO2(8mol%); 0.95KNN-0.05BZN—0.95K0.5Na0.5NbO3-0.05Ba(Zn1/3-Nb2/3)O3; KNNC-12.75SZ—0.8725K0.5Na0.5NbO3-0.1275SrZrO3; 0.85KNN-0.15BZZ—0.8K0.5Na0.5NbO3-0.15Bi(Zn0.5Zr0.5)O3; 0.975KNN-0.025LB—0.975K0.5Na0.5NbO3-0.025LaBiO3; 0.8KNN-0.2SSN—0.8K0.5Na0.5NbO33-0.2Sr(Sc0.5Nb0.5)O3; BT-BMN-NBT—0.7[0.85BaTiO3-0.15Bi(Mg2/3Nb1/3)O3]-0.3Na0.5Bi0.5TiO3.
    下载: 导出CSV
  • [1] YAN F, YANG H B, LIN Y, et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications[J]. Inorganic Chemistry,2017,56(21):13510-13516. doi: 10.1021/acs.inorgchem.7b02181
    [2] YAN F, SHI Y J, ZHOU X F, et al. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications[J]. Chemical Engineering Journal,2020,417(1):127945.
    [3] WEI T, LIU K, FAN P Y, et al. Novel NaNbO3-Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties[J]. Ceramics International,2021,47(3):3713-3719. doi: 10.1016/j.ceramint.2020.09.228
    [4] YAN F, HUANG K W, JIANG T, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering[J]. Energy Storage Materials,2020,30:392-400. doi: 10.1016/j.ensm.2020.05.026
    [5] ZHANG L, PANG L X, LI W B, et al. Extreme high energy storage efficiency in perovskite structured (1-x)(Ba0.8Sr0.2)TiO3-xBi(Zn2/3Nb1/3)O3 (0.04≤x≤0.16) ceramics[J]. Journal of the European Ceramic Society,2020,40(8):3343-3347. doi: 10.1016/j.jeurceramsoc.2020.03.015
    [6] HUANG Y H, WU Y J, LIU B, et al. From core-shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering[J]. Journal of Materials Chemistry A,2018,6(10):4477-4484. doi: 10.1039/C7TA10821D
    [7] CAI Z M, WANG X H, HONG W, et al. Grain-size-dependent dielectric properties in nanograin ferroelectrics[J]. Journal of the American Ceramic Society,2018,101(12):5487-5496. doi: 10.1111/jace.15803
    [8] LIU B B, WANG X H, ZHANG R X, et al. Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics[J]. Journal of the American Ceramic Society,2017,100(8):3599-3607. doi: 10.1111/jace.14802
    [9] ZHANG C, CHEN Y, ZHOU M X, et al. Achieving ultrahigh dielectric breakdown strength in MgO-based ceramics by composite structure design[J]. Journal of Materials Chemistry C,2019,7(26):8120-8130. doi: 10.1039/C9TC02197C
    [10] LI Y, SUN N N, LI X W, et al. Multiple electrical response and enhanced energy storage induced by unusual coexistent-phase structure in relaxor ferroelectric ceramics[J]. Acta Materialia,2018,146:202-210. doi: 10.1016/j.actamat.2017.12.048
    [11] GAO P, LIU Z H, ZHANG N, et al. New antiferroelectric perovskite system with ultrahigh energy storage performance at low electric field[J]. Chemistry of Materials,2019,31(3):979-990. doi: 10.1021/acs.chemmater.8b04470
    [12] YE J M, WANG G S, ZHOU M X, et al. Excellent comprehensive energy storage properties in novel lead-free NaNbO3-based ceramics for dielectric capacitor applications[J]. Journal of Materials Chemistry C,2019,7(19):5639-5645. doi: 10.1039/C9TC01414D
    [13] WANG G, LI J L, ZHANG X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity[J]. Energy & Environmental Science,2019,12(2):582-588.
    [14] QI H, XIE A W, TIAN A, et al. Superior energy-storage capacitors with simultaneously giant energy density and effciency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics[J]. Advanced Energy Materials,2020,10(6):1903338.
    [15] YAN Z N, ZHANG D, ZHOU X F, et al. Silver niobate based lead-free ceramics with high energy storage density[J]. Journal of Materials Chemistry A,2019,7(17):10702-10711. doi: 10.1039/C9TA00995G
    [16] LIU G, LI Y, SHI M Q, et al. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability[J]. Ceramics International,2019,45(15):19189-19196. doi: 10.1016/j.ceramint.2019.06.166
    [17] LI Q, LI M Y, WANG C, et al. Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modifed (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics[J]. Ceramics International,2019,45(16):19822-19828. doi: 10.1016/j.ceramint.2019.06.237
    [18] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science,2019,365(6453):578-582. doi: 10.1126/science.aaw8109
    [19] PAN H, MA J, MA J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering[J]. Nature Communications,2018,9:1813.
    [20] SUN Z X, MA C R, LIU M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering[J]. Advanced Materials,2017,29(5):1604427.
    [21] LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials,2018,17:349-354. doi: 10.1038/s41563-018-0034-4
    [22] SHVARTSMAN V V, LUPASCU D C. Lead-free relaxor ferroelectrics[J]. Journal of the American Ceramic Society,2012,95(1):1-26. doi: 10.1111/j.1551-2916.2011.04952.x
    [23] JO W, SCHAAB S, SAPPER E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3[J]. Journal of Applied Physics,2011,110:74106.
    [24] HIRATA Y, FUJITA H, SHIMONOSONO T. Compressive mechanical properties of partially sintered porous alumina of bimodal particle size system[J]. Ceramics International,2017,43(2):1895-1903. doi: 10.1016/j.ceramint.2016.10.149
    [25] OH J W, SEONG Y J, SHIN D S, et al. Investigation and two-stage modeling of sintering behavior of nano/micro-bimodal powders[J]. Powder Technology,2019,352(15):42-52.
    [26] XU H Y, ZOU J, WANG W M, et al. Densification mechanism and microstructure characteristics of nano- and micro- crystalline alumina by high-pressure and low temperature sintering[J]. Journal of the European Ceramic Society,2021,41(1):635-645. doi: 10.1016/j.jeurceramsoc.2020.08.018
    [27] ZHAI X Y, CHEN Y J, MA Y Q, et al. A new strategy of binary-size particles model for fabricating fine grain, high density and low resistivity ITO target[J]. Ceramics International,2020,46(9):13660-13668. doi: 10.1016/j.ceramint.2020.02.152
    [28] YANG Y, JI Y, FANG M X, et al. Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivit[J]. Physical Review Letters,2019,123(13):137601.
    [29] CHEN B, TIAN Y, LU J B, et al. Ultrahigh storage density achieved with (1-x)KNN-xBZN ceramics[J]. Journal of the European Ceramic Society,2020,40(8):2936-2944. doi: 10.1016/j.jeurceramsoc.2020.03.003
    [30] JIN Q, ZHAO L L, CUI B, et al. Enhanced energy storage properties in lead-free BaTiO3@Na0.5K0.5NbO3 nano-ceramics with nanodomains via a core-shell structural design[J]. Journal of Materials Chemistry C,2020,8(15):5248-5258. doi: 10.1039/D0TC00179A
    [31] HUI K Z, CHEN L L, CEN Z Y, et al. KNN based high dielectric constant X9 R ceramics with fine grain structure and energy storage ability[J]. Journal of the American Ceramic Society,2021,104(11):5815-5825. doi: 10.1111/jace.17970
    [32] CHEN B, LIANG P F, WU D, et al. High-efficiency synthesis of high-performance K0.5Na0.5NbO3 ceramics[J]. Powder Technology,2019,346(15):248-255.
    [33] ZHANG M, YANG H B, LI D, et al. Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics[J]. Journal of Materials Chemistry C,2020,8(26):8777-8785. doi: 10.1039/D0TC01711F
    [34] XING J, HUANG Y L, XU Q, et al. Realizing high comprehensive energy storage and ultrahigh hardness in lead-free ceramics[J]. ACS Applied Materials & Interfaces,2021,13(24):28472-28483.
    [35] QU B Y, DU H L, YANG Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability[J]. Journal of Materials Chemistry C,2016,4(9):1795-1803. doi: 10.1039/C5TC04005A
    [36] LI Y M, BIAN J J. Effects of reoxidation on the dielectric and energy storage properties of Ce-doped (Ba, Sr)TiO3 ceramics prepared by hot-pressed sintering[J]. Journal of the European Ceramic Society,2020,40(15):5441-5449. doi: 10.1016/j.jeurceramsoc.2020.06.076
    [37] MERSELMIZ S, HANANI Z, MEZZANE D, et al. High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic[J]. Ceramics International,2020,46(15):23867-23876. doi: 10.1016/j.ceramint.2020.06.163
    [38] WANG T, LIU J Q, KONG L, et al. Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics[J]. Ceramics International,2020,46(16):25392-25398. doi: 10.1016/j.ceramint.2020.07.007
    [39] YANG Z T, DU H L, QU S B, et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics[J]. Journal of Materials Chemistry A,2016,4(36):13778-13785. doi: 10.1039/C6TA04107H
    [40] YANG Z T, GAO F, DU H L, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties[J]. Nano Energy,2019,58:768-777. doi: 10.1016/j.nanoen.2019.02.003
    [41] YAN X D, ZHENG M P, GAO X, et al. High-performance lead-free ferroelectric BZT-BCT and its application in energy fields[J]. Journal of Materials Chemistry C,2020,8(39):13530-13556. doi: 10.1039/D0TC03461D
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  904
  • HTML全文浏览量:  424
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-04-20
  • 录用日期:  2022-04-26
  • 网络出版日期:  2022-05-10
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回