留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯丙乳液-矿渣地聚物泡沫复合材料的制备及性能

宋学锋 郭渊飞

宋学锋, 郭渊飞. 苯丙乳液-矿渣地聚物泡沫复合材料的制备及性能[J]. 复合材料学报, 2022, 39(7): 3232-3241. doi: 10.13801/j.cnki.fhclxb.20210827.001
引用本文: 宋学锋, 郭渊飞. 苯丙乳液-矿渣地聚物泡沫复合材料的制备及性能[J]. 复合材料学报, 2022, 39(7): 3232-3241. doi: 10.13801/j.cnki.fhclxb.20210827.001
SONG Xuefeng, GUO Yuanfei. Preparation and performance of styrene acrylic emulsion-slag geopolymer foam composite[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3232-3241. doi: 10.13801/j.cnki.fhclxb.20210827.001
Citation: SONG Xuefeng, GUO Yuanfei. Preparation and performance of styrene acrylic emulsion-slag geopolymer foam composite[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3232-3241. doi: 10.13801/j.cnki.fhclxb.20210827.001

苯丙乳液-矿渣地聚物泡沫复合材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20210827.001
基金项目: 陕西省科技厅资助项目(2018SF-367)
详细信息
    通讯作者:

    宋学锋,博士,教授,硕士生导师,研究方向为碱激发胶凝材料 E-mail:songxuefeng-2008@163.com

  • 中图分类号: TB332

Preparation and performance of styrene acrylic emulsion-slag geopolymer foam composite

  • 摘要: 以苯丙乳液、矿渣地聚物、导热石墨粉为原料,利用化学发泡原理制备出一种具有自流平、成膜固化快、高弹、高导热等特点的泡沫复合材料。详细研究了H2O2掺量、导热石墨粉掺量及其粒度分布对泡沫复合材料传热性能、材料力学性能及压缩变形性能的影响规律。研究结果表明,随H2O2掺量的增加,泡沫复合材料的拉伸强度、断裂伸长率、压缩强度、导热系数均降低,弹性恢复率增加;随导热石墨粉掺量增加,拉伸强度先增加后降低,断裂伸长率降低,压缩强度增加,弹性恢复率小幅波动,导热系数增大;随导热石墨粉平均粒径增大,拉伸强度减小,压缩强度增大,导热系数先增大后减小;导热石墨粉的颗粒级配对其导热性具有重要影响,相比粗、细颗粒,适中的颗粒级配可使其形成更有效的导热网络获得更高导热系数。

     

  • 图  1  三种导热石墨粉GA、GB、GC的粒径分布

    Figure  1.  Particle size distribution of three kinds of thermal conductive graphite powder GA, GB and GC

    图  2  苯丙乳液-矿渣地聚物泡沫复合材料制备流程及部分性能检测

    Figure  2.  Preparation process and partial performance testing of styrene acrylic emulsion-slag geopolymer foam composite material

    图  3  H2O2掺量对苯丙乳液-矿渣地聚物泡沫复合材料拉伸强度及断裂伸长率的影响

    Figure  3.  Influence of H2O2 content on the tensile strength and elongation at break of styrene-acrylic emulsion-slag geopolymer foam composite material

    图  4  H2O2掺量对苯丙乳液-矿渣地聚物泡沫复合材料压缩强度及弹性恢复率的影响

    Figure  4.  Influence of H2O2 content on the compressive strength and elastic recovery rate of styrene-acrylic emulsion-slag geopolymer foam composite material

    图  5  不同H2O2掺量苯丙乳液-矿渣地聚物泡沫复合材料的FTIR图谱

    Figure  5.  FTIR spectra of styrene-acrylic emulsion-slag geopolymer foam composite material with different H2O2 contents

    图  6  H2O2掺量对苯丙乳液-矿渣地聚物泡沫复合材料导热系数及孔隙率的影响

    Figure  6.  Influence of H2O2 content on the thermal conductivity and porosity of styrene acrylic emulsion-slag geopolymer foam composite material

    图  7  不同H2O2掺量的苯丙乳液-矿渣地聚物泡沫复合材料孔隙形貌图

    Figure  7.  Pore morphologies of styrene acrylic emulsion-slag geopolymer foam composite material with different H2O2 contents

    图  8  石墨掺量对苯丙乳液-矿渣地聚物泡沫复合材料拉伸强度及断裂伸长率的影响

    Figure  8.  Effect of graphite content on the tensile strength and elongation at break of styrene acrylic emulsion-slag geopolymer foam composite material

    图  9  石墨掺量对苯丙乳液-矿渣地聚物泡沫复合材料压缩强度及弹性恢复率影响

    Figure  9.  Effect of graphite content on the compressive strength and elastic recovery rate of styrene acrylic emulsion-slag geopolymer foam composite material

    图  10  石墨粒度和掺量对苯丙乳液-矿渣地聚物泡沫复合材料导热系数的影响

    Figure  10.  Influence of graphite particle size and content on the thermal conductivity of styrene acrylic emulsion-slag geopolymer foam composite material

    图  11  加热过程中(a)、冷却过程中(d)不同石墨掺量苯丙乳液-矿渣地聚物泡沫复合材料的红外摄像机图像;加热过程中(b)、冷却过程中(c)复合材料的温度-时间曲线

    Figure  11.  Infrared camera images of the styrene acrylic emulsion-slag geopolymer foam composite material with different graphite contents during heating (a) and cooling (d); Temperature-time curves of composite material during the heating process (b) and cooling process (c)

    图  12  苯丙乳液-矿渣地聚物泡沫复合材料微观形貌图

    Figure  12.  Microscopic morphologies of the styrene acrylic emulsion-slag geopolymer foam composites

    表  1  S400F型苯丙乳液性能指标

    Table  1.   Performance indicators of S400F type styrene-acrylic emulsion

    ExteriorAverage granularity/μmGlass transition temperature/℃Solid content/wt%Viscosity/(mPa·s)pH
    Milky white liquid 0.1 −6 55-57 400-1800 7.0-8.4
    下载: 导出CSV

    表  2  SN-DISPERSANT 5040 型分散剂的性能指标

    Table  2.   Performance indicators of SN-DISPERSANT 5040 dispersant

    ExteriorIonicitySolubilitySolid component/%ProportionpHViscosity/(mPa·s)
    5℃25℃
    Light yellow liquidAnionSolubile in water42.51.297.51700450
    下载: 导出CSV

    表  3  高炉矿渣性能指标

    Table  3.   Performance indicators of Slag

    StabilityLoss on ignition/%Fineness/(m2·kg−1)Density/(g·cm−3)Activity index
    7 days28 days
    Qualified0.44322.8785%103%
    下载: 导出CSV

    表  4  石墨颗粒粒度分布参数

    Table  4.   Graphite particle size distribution parameters

    NumberD10/μmD50/μmD90/μm(D90D10)/D50
    GA 13.96 42.52 91.33 1.82
    GB 2.63 8.57 23.71 2.46
    GC 3.94 22.43 75.56 3.19
    Notes: (D90D10)/D50 is defined as the degree of dispersion of particle size distribution.
    下载: 导出CSV

    表  5  本文制备的苯丙乳液-矿渣地聚物泡沫复合材料与市售地垫性能对比

    Table  5.   Performance comparison between the styrene acrylic emulsion-slag geopolymer foam composite material prepared in this article and the commercial floor mat

    Material performanceCommercial floor matsFoam composite material
    Self-leveling No Yes
    Airtightness Poor airtightness Good airtightness
    Tensile strength/MPa 0.45 0.25
    Elongation/% 86 100
    Compressive strength/MPa 0.05 0.11
    Elastic recovery rate/% 99 96.7
    Thermal conductivity/(W·(m·K)−1) 0.032 0.209
    下载: 导出CSV
  • [1] 刘大鹏. 浅谈建筑工程中有关集中供暖和供热的节能问题优势[J]. 居舍, 2021(9):1-2+10.

    LIU Dapeng. An introduction to the advantages of energy saving in construction projects concerning central heating and heating[J]. Residence,2021(9):1-2+10(in Chinese).
    [2] LI N, CHEN Q. Experimental study on heat transfer characteristics of interior walls under partial-space heating mode in hot summer and cold winter zone in China[J]. Applied Thermal Engineering,2019,162:114264.
    [3] 薛磊. 浅析低温热水地板辐射采暖系统在暖通工程中的应用[J]. 居舍, 2020(8):99.

    XUE Lei. The application of low temperature hot water radiant floor heating systems in HVAC engineering[J]. Residence,2020(8):99(in Chinese).
    [4] LI Z R, ZHANG D K, LI C. Experimental evaluation of indoor thermal environment with modularity radiant heating in low energy buildings[J]. International Journal of Refrigeration,2021,123:159-168.
    [5] BLANCHET P. Long-term performance of engineered wood flooring when exposed to temperature and humidity cycling[J]. Forest Products Journal,2008,58(9):37-44.
    [6] 高晶晶, 韦崖灯, 何正斌, 等. 不同热处理工艺对实木地板材色和尺寸稳定性的影响[J]. 东北林业大学学报, 2021, 49(2):93-96.

    GAO Jingjing, WEI Yadeng, HE Zhengbin, et al. Effects of different heat treatment processes on the color and dimensional stability of solid wood flooring[J]. Journal of Northeast Forestry University,2021,49(2):93-96(in Chinese).
    [7] 陈绪港, 薛炜, 谢民燕, 等. 聚合物水泥复合防水涂料阻燃性能研究[J]. 新型建筑材料, 2019, 46(9):157-159. doi: 10.3969/j.issn.1001-702X.2019.09.038

    CHEN Xugang, XUE Wei, XIE Minyan, et al. Study on the flame-retardant properties of polymer cement composite waterproof coating[J]. New Building Materials,2019,46(9):157-159(in Chinese). doi: 10.3969/j.issn.1001-702X.2019.09.038
    [8] KHALID H R, LEE N K, PARK S M, et al. Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential[J]. Journal of Hazardous Materials,2018,353:522-533. doi: 10.1016/j.jhazmat.2018.04.049
    [9] LEE N K, KHALID H R, LEE H K. Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment[J]. Microporous and Mesoporous Materials,2016,229:22-30. doi: 10.1016/j.micromeso.2016.04.016
    [10] 赖晓琳. 我国苯丙乳液的应用进展[J]. 上海化工, 2017, 42(7):40-42. doi: 10.3969/j.issn.1004-017X.2017.07.016

    LAI Xiaolin. Application progress of styrene-acrylic emulsion in my country[J]. Shanghai Chemical Industry,2017,42(7):40-42(in Chinese). doi: 10.3969/j.issn.1004-017X.2017.07.016
    [11] VAN DEVENTER J S J, PROVIS J L, DUXSON P, et al. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products[J]. Journal of Hazardous Materials,2007,139(3):506-513. doi: 10.1016/j.jhazmat.2006.02.044
    [12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 聚合物水泥防水涂料: GB/T 23445—2009[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Management Committee. Polymer cement waterproof coating: GB/T 23445—2009[S]. Beijing: Standards Press of China, 2009 (in Chinese).
    [13] 中华人民共和国国家质量监督检验检疫总局. 高聚物多孔弹性材料压缩 应力应变特性的测定 第1部分: 低密度材料: GB/T 18942.1—2003[S]. 北京: 中国标准出版社, 2003.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Flexible cellular polymeric materials—Determination of stress-strain charateristics in compression—Part 1: Low-density materials: GB/T 18942.1—2003[S]. Beijing: Standards Press of China, 2003 (in Chinese).
    [14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 绝热材料稳态热阻及有关特性的测定 防护热板法: GB/T 10294—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Management Committee. Thermal insulation—Determination of steady-state thermal resistance and related preperties—Guarded hot plate apparatus: GB/T 10294—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 建筑用绝热制品 绝热材料与粘结剂和基底涂层的拉伸粘结强度的测定: GB/T 30803—2014[S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Management Committee. Thermal insulation products for building applications—Determination of the tensile bond strength of the adhesive and of the base coat to the thermal insulation material: GB/T 30803—2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
    [16] WU Y M, DUAN H D, YU Y Q, et al. Preparation and performance in paper coating of silicone-modified styrene-butyl acrylate copolymer latex[J]. Journal of Applied Polymer Science,2001,79(2):333-336. doi: 10.1002/1097-4628(20010110)79:2<333::AID-APP160>3.0.CO;2-8
    [17] 李文政, 王丹, 常钧. 不同乳液对聚合物水玻璃基防水涂料力学性能作用机理[J]. 大连理工大学学报, 2020, 60(3):276-284.

    LI Wenzheng, WANG Dan, CHANG Jun. The mechanism of action of different emulsions on the mechanical properties of polymer water glass-based waterproof coatings[J]. Journal of Dalian University of Technology,2020,60(3):276-284(in Chinese).
    [18] FAN Y R, FOWLER G D, ZHAO M. The past, present and future of carbon black as a rubber reinforcing filler—A review[J]. Journal of Cleaner Production,2020,247:119115.
    [19] BIAN W C, YAO T, CHEN M, et al. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin[J]. Composites Science and Technology, 2018, 168: 420-428.
    [20] LIANG Y M, ZHANG B, LIU Z C, et al. Electroless deposition surface engineering of boron nitride sheets for enhanced thermal conductivity and decreased interfacial thermal resistance of epoxy composites[J]. International Journal of Heat and Mass Transfer,2021,174:121306.
    [21] KIM H S, NA J H, JUNG Y C, et al. Synergistic enhancement of thermal conductivity in polymer composites filled with self-hybrid expanded graphite fillers[J]. Journal of Non-Crystalline Solids,2016,450:75-81. doi: 10.1016/j.jnoncrysol.2016.07.038
    [22] KIM H S, KIM J H, YANG C M, et al. Synergistic enhancement of thermal conductivity in composites filled with expanded graphite and multi-walled carbon nanotube fillers via melt-compounding based on polymerizable low-viscosity oligomer matrix[J]. Journal of Alloys and Compounds,2017,690:274-280.
    [23] 张晨旭, 毛大厦, 曾小亮, 等. 球型Al2O3-AlN颗粒复配填充型硅橡胶的制备及导热性能研究[J]. 集成技术, 2021, 10(1):14-22.

    ZHANG Chenxu, MAO Dasha, ZENG Xiaoliang, et al. Preparation of spherical Al2O3-AlN particle compound filled silicone rubber and research on its thermal conductivity[J]. Integrated Technology,2021,10(1):14-22(in Chinese).
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  710
  • HTML全文浏览量:  378
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-08-17
  • 录用日期:  2021-08-19
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回