留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含碳硼烷单元聚酰亚胺材料的制备及其耐热机制

郝一帆 董杰 赵昕 张清华

郝一帆, 董杰, 赵昕, 等. 含碳硼烷单元聚酰亚胺材料的制备及其耐热机制[J]. 复合材料学报, 2022, 39(0): 1-10
引用本文: 郝一帆, 董杰, 赵昕, 等. 含碳硼烷单元聚酰亚胺材料的制备及其耐热机制[J]. 复合材料学报, 2022, 39(0): 1-10
Yifan HAO, Jie DONG, Xin ZHAO, Qinghua ZHANG. Preparation of polyimides containing carborane moiety and the thermal resistance mechanism[J]. Acta Materiae Compositae Sinica.
Citation: Yifan HAO, Jie DONG, Xin ZHAO, Qinghua ZHANG. Preparation of polyimides containing carborane moiety and the thermal resistance mechanism[J]. Acta Materiae Compositae Sinica.

含碳硼烷单元聚酰亚胺材料的制备及其耐热机制

基金项目: 国家自然科学基金 (基金号: (No. 51903038, 52173196, 21975040)
详细信息
    通讯作者:

    董杰,博士,副研究员,硕士生导师,研究方向为高性能聚合物纤维及复合材料 E-mail: dj01@dhu.edu.cn

  • 中图分类号: (TB324;TB35)

Preparation of polyimides containing carborane moiety and the thermal resistance mechanism

  • 摘要: 聚酰亚胺是先进复合材料重要的基体材料之一。本文在聚酰亚胺主链中成功引入碳硼烷笼状单元,制备出一系列有机-无机杂化的聚酰亚胺材料。从单体设计入手,设计合成了含邻碳硼烷单元的二胺单体(DNCB),再与4,4'-二氨基二苯醚(ODA)和3,3',4,4'-苯甲酮四羧酸二酐(BTDA)进行共聚反应,合成前驱体聚酰胺酸(PAA)溶液并制备PAA薄膜,再经高温热亚胺化处理得到含碳硼烷单元的聚酰亚胺。对制备的聚酰亚胺材料的耐热性能和耐热氧化稳定性进行了系统研究,结果表明,碳硼烷单元的引入使聚酰亚胺基体的热稳定性和热氧化稳定性得到显著提升。当二胺单体中DNCB摩尔分数为40mol%时,在N2气氛下,T5%提升近13℃,T10%提升近43℃,质量残留率高达82.6%;在空气氛围下,T5%提升近37℃,T10%提升近62℃,质量残留率高达83.1%。X-射线光电子能谱(XPS)及扫描电镜(SEM)结果表明在聚酰亚胺主链中引入碳硼烷笼状单元后在高温环境中易在材料表面形成氧化硼(B2O3)钝化层,从而显著提升材料的耐热氧化稳定性。

     

  • 图  1  新型含碳硼烷单元二胺单体DNCB的合成路线

    Figure  1.  Synthesis route of novel carborane-containing diamine DNCB

    图  2  新型含碳硼烷单元聚酰亚胺薄膜的制备

    Figure  2.  Synthesis route of polyimides containing DNCB

    图  3  DOCB的FTIR图谱(a)和1H-NMR图谱(b)

    Figure  3.  (a)FTIR spectrum of DOCB; (b)1H-NMR spectrum of DOCB

    图  4  DNCB的FTIR图谱(a)和1H-NMR图谱(b)

    Figure  4.  (a) FTIR spectrum of DNCB; (b) 1H-NMR spectrum of DNCB

    图  5  含邻碳硼烷单元聚酰亚胺薄膜(xDNCB/PI)的FTIR

    Figure  5.  FTIR spectra of polyimides containing DNCB (xDNCB/PI)

    图  6  N2氛围(a)及空气氛围(b)下xDNCB/PI的TGA曲线

    Figure  6.  (a) TGA curves in N2; (b) TGA curves in air

    图  7  xDNCB/PI在500℃下热处理60 min的数码照片

    Figure  7.  Digital images of xDNCB/PI treated at 500℃ for 60 min

    图  8  空气氛围下xDNCB/PI的DMA曲线

    Figure  8.  DMA curves of xDNCB/PI in air

    图  9  xDNCB/PI的广角X-ray衍射图谱

    Figure  9.  XRD patterns of xDNCB/PI

    图  10  xDNCB/PI的力学性能应力-应变曲线(a);平均抗张强度和杨氏模量(b)

    Figure  10.  Mechanical properties of xDNCB/PI stress-strain curves(a); average tensile strength and young's modulus(b)

    图  11  20DNCB/PI在600℃恒温处理后的B 1s谱图

    Figure  11.  B 1s spectra of 20DNCB/PI isothermally treated at 600℃

    图  12  20DNCB/PI在600℃处理不同时间的数码照片(a)及SEM表面图像(b) SEM截面图像(c)

    Figure  12.  Digital images(a); SEM surface images(b); SEM cross section images(c) of 20DNCB/PI treated at 600℃ for different times

    表  1  20DNCB/PI中各元素的理论值和测试值

    Table  1.   Calculated and experimental values of different elements in the 20DNCB/PI

    Elemental ContentsC/at%N/at%O/at%B/at%
    Calculated values69.015.4818.144.23
    XPS analysis72.474.2417.715.58
    下载: 导出CSV

    表  2  xDNCB/PI的分子量

    Table  2.   Molecular weight data of xDNCB/PI

    CodePI10DNCB/PI20DNCB/PI30DNCB/PI40DNCB/PI
    Mn/g·mol−19381574001690686575754147
    Mw/g·mol−11933151761731053429881078799
    PDI2.062.381.531.501.45
    Notes: Mn is the number-average molecular weight; Mw is the weight-average molecular weight
    下载: 导出CSV

    表  3  N2氛围下xDNCB/PI的热重分析数据

    Table  3.   TGA data of xDNCB/PI in N2

    CodePI10DNCB/PI20DNCB/PI30DNCB/PI40DNCB/PI
    T5%/℃554.3562.0562.1562.6566.9
    T10%/℃574.4589.4595.0601.9617.4
    Residue at 900℃60.365.869.178.182.6
    Notes:T5% is the temperature for 5% weight loss; T10% is the temperature for 10% weight loss
    下载: 导出CSV

    表  4  空气氛围下xDNCB/PI的热重分析数据

    Table  4.   TGA data of xDNCB/PI in air

    CodePI10DNCB/PI20DNCB/PI30DNCB/PI40DNCB/PI
    T5%/℃545.5556.4561.5564.8581.8
    T10%/℃572.4579.7586.8589.3635.9
    Residue at 900℃0.613.639.067.383.1
    Notes:T5% is the temperature for 5% weight loss; T10%is the temperature for 10% weight loss
    下载: 导出CSV
  • [1] QU Ximing, JI Mian, FAN Lin, et al. Thermoset polyimide matrix resins with improved toughness and high Tg for high temperature carbon fiber composites[J]. High Performance Polymers,2011,23(4):281-289. doi: 10.1177/0954008311403839
    [2] KARGER-KOCSIS J, MAHMOOD H, PEGO-RETTI A. Recent advances in fiber/matrix interphase engineering for polymer composites[J]. Progress in Materials Science,2015,73:1-43. doi: 10.1016/j.pmatsci.2015.02.003
    [3] LAU K S Y. High-performance polyimides and high temperature resistant polymers[J]. In Handbook of Thermoset Plastics,2014:297-424.
    [4] 刘仪, 莫松, 潘玲英, 等. 耐高温有机无机杂化聚酰亚胺树脂及其复合材料[J]. 宇航材料工艺, 2018, 48(3):1-5.

    LIU Yi, MO Song, PAN Lingying, et al. High temperature resistant organic-inorganic hybrid polyimide resin and its composite materials[J]. Aerospace Materials& Technology,2018,48(3):1-5(in Chinese).
    [5] 王天琦, 肖国勇, 鲁云华, 等. 镧系金属有机骨架/聚酰亚胺复合材料的制备及其性能[J]. 复合材料学报, 2018, 35(11):2927-2934.

    WANG Tianqi, XIAO Guoyong, LU Yunhua, et al. Preparation and properties of lanthanide metal-organic frameworks/polyimide composites[J]. Acta Materiae Compositae Sinica,2018,35(11):2927-2934(in Chinese).
    [6] LIU Zhongyun. , LIU Yang, QIU Wulin, et al. Molecularly engineered 6FDA-based polyimide membranes for sour natural gas separation[J]. Angew Chem Int Ed Engl,2020,59(35):14877-14883. doi: 10.1002/anie.202003910
    [7] WU A X, DRAYTON J A, RODRIGUEZ K M, et al. Influence of aliphatic and aromatic fluorine groups on gas permeability and morphology of fluorinated polyimide films[J]. Macromolecules,2020,53(13):5085-5095. doi: 10.1021/acs.macromol.0c01024
    [8] PARK Y S, JEE M H, BAIK D H. Preparation and characterization of electrospun multi-layered polyimide nanoweb with enhanced mechanical properties[J]. Fibers and Polymers, 2021.
    [9] QIAN Guangtao, CHEN Haiquan, SONG Guangliang, et al. Superheat-resistant polyimides with ultra-low coefficients of thermal expansion[J]. Polymer,2020,196:188482.
    [10] LIAN Ruhe, LEI Xingfeng, XUE Shuyu, et al. Janus polyimide films with outstanding AO resistance, good optical transparency and high mechanical strength[J]. Applied Surface Science,2021,535:147654. doi: 10.1016/j.apsusc.2020.147654
    [11] LIU Yiwu, TANG A, TAN Jihua, et al. Structure and gas barrier properties of polyimide containing a rigid planar fluorene moiety and an amide group: insights from molecular simulations[J]. ACS Omega,2021,6(6):4273-4281. doi: 10.1021/acsomega.0c05278
    [12] LIU Tuanqing, ZHENG Feng, MA Xiaoru, et al. High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications[J]. Polymer,2020,209:122963. doi: 10.1016/j.polymer.2020.122963
    [13] MEKURIA T D, WANG Lei, ZHANG Chunhong, et al. Synthesis and characterization of high strength polyimide/silicon nitride nanocom-posites with enhanced thermal and hydrophobic properties[J]. Chinese Journal of Chemical Engineering,2021,32:446-453. doi: 10.1016/j.cjche.2020.09.066
    [14] OU Xianghui, CHEN Shuangshuang, LU Xuemin, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Composites Communications,2021,23:100549. doi: 10.1016/j.coco.2020.100549
    [15] OTHMAN M B H, RAMLI R, ARIFF Z M, et al. Thermal properties of polyimide system containing silicone segments[J]. Journal of Thermal Analysis and Calorimetry,2012,109(3):1515-1523. doi: 10.1007/s10973-011-1893-y
    [16] LI Xiaomin, WU Juying, TANG Changyu, et al. High temperature resistant poly-imide/boron carbide composites for neutron radiation shielding[J]. Composites Part B:Engineering,2019,159:355-361. doi: 10.1016/j.compositesb.2018.10.003
    [17] VINOGRADOVA S V, VALETSKII P M, KABACHII Y A. Polymers with arylenedi-carbadodecaborane fragments in the chain[J]. Russian Chemical Reviews,1995,64(4):365-388. doi: 10.1070/RC1995v064n04ABEH000155
    [18] ENDO Y, SONGKRAM C, YAMASAKI R, et al. Molecular construction based on icosahedral carboranes and aromatic N, N'-dimethylurea groups. Aromatic layered molecules and a tran-sition metal complex[J]. Journal of Organometallic Chemistry,2002,657(1):48-58.
    [19] HUANG Xin, ZHANG Qiuhong, MENG Zheng, et al. Greatly enhanced thermo-oxidative stability of polybenzoxazine thermoset by incorporation of m-carborane[J]. Journal of Polymer Science Part a-Polymer Chemistry,2015,53(8):973-980. doi: 10.1002/pola.27525
    [20] LI Ning, ZENG Fanglei, QU Dezhi, et al. Synthesis and characterization of carborane-containing polyester with excellent thermal and ultrahigh char yield[J]. Journal of Applied Polymer Science,2016,133(46):44202.
    [21] CUI Meili, ZHANG Lili, LOU Pingping, et al. Study on thermal degradation mechanism of heat-resistant epoxy resin modified with carboranes[J]. Polymer Degradation and Stability,2020,176:10913.
    [22] GOYAL S, FORRESTER M J, COVERDELL D, et al. High-temperature-performance cyanate ester composites with carboranes[J]. Macromolecules,2021,54(19):9155-9164. doi: 10.1021/acs.macromol.1c01410
  • 加载中
计量
  • 文章访问数:  145
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-01-09
  • 修回日期:  2021-12-20
  • 网络出版日期:  2022-02-16

目录

    /

    返回文章
    返回