留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝蜂窝夹芯板面外剪切性能试验研究与数值模拟

辛亚军 孙帅 杨硕 吴灵杰 程树良

辛亚军, 孙帅, 杨硕, 等. 铝蜂窝夹芯板面外剪切性能试验研究与数值模拟[J]. 复合材料学报, 2021, 39(0): 1-11
引用本文: 辛亚军, 孙帅, 杨硕, 等. 铝蜂窝夹芯板面外剪切性能试验研究与数值模拟[J]. 复合材料学报, 2021, 39(0): 1-11
Yajun XIN, Shuai SUN, Shuo YANG, Lingjie WU, Shuliang CHENG. Experiment and numerical simulation of out-plane shear performance of aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica.
Citation: Yajun XIN, Shuai SUN, Shuo YANG, Lingjie WU, Shuliang CHENG. Experiment and numerical simulation of out-plane shear performance of aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica.

铝蜂窝夹芯板面外剪切性能试验研究与数值模拟

基金项目: 国家自然科学基金 (61690222);燕山大学博士基金项目 (BL17027)
详细信息
    通讯作者:

    程树良,博士,教授,研究方向为多孔功能性材料等 E-mail:slcheng@ysu.edu.cn

  • 中图分类号: TB383

Experiment and numerical simulation of out-plane shear performance of aluminum honeycomb sandwich panel

  • 摘要: 通过试验和数值模拟对铝蜂窝夹芯板的面外剪切行为和力学性能进行了研究,讨论了其失效模式,提取了典型荷载-位移曲线,分析了面板厚度、蜂窝胞元尺寸和芯层厚度对夹芯板极限承载力和吸能能力的影响。结果表明,铝蜂窝夹芯板面外剪切破坏过程大致经历弹塑性变形阶段、上面板损伤失效、芯层致密和下面板损伤失效四个阶段,呈现出整体性失效和阶段性失效两种失效模式。失效模式类型主要受到面板厚度和胞元尺寸的相对关系影响,增加面板厚度或胞元尺寸都会使破坏模式从整体性失效向阶段性失效转变,阶段性失效模式吸能能力比整体性失效模式提高。剪切强度和吸能能力随面板厚度增加而提高,随胞元尺寸增大而降低,剪切强度受芯层厚度的影响很小,夹芯板吸能能力随芯层厚度增加而提高。数值模拟与试验结果吻合程度较好,充分验证了有限元模型的可靠性。

     

  • 图  1  铝蜂窝夹芯板的示意图及试件

    Figure  1.  Schematic diagram and specimen of aluminum honeycomb sandwich panel ((a) Size of the specimen; (b) Loading diagram; (c) Specimen cell; (d) Finished specimens)

    图  2  铝蜂窝夹芯板面外剪切试验系统

    Figure  2.  Out-plane shear tests system of aluminum honeycomb sandwich panel

    图  3  铝蜂窝夹芯板面外剪切荷载-位移曲线

    Figure  3.  Out-plane shear load-displacement cruves of aluminum honeycomb sandwich panel

    图  4  铝蜂窝夹芯板面外剪切典型荷载-位移曲线

    Figure  4.  Typical out-plane shear load-displacement cruves of aluminum honeycomb sandwich panel

    图  5  铝蜂窝夹芯板面外剪切破坏过程

    Figure  5.  Failure process of aluminum honeycomb sandwich panel in out-plane shear tests

    图  6  不同面板厚度铝蜂窝夹芯板面外剪切荷载-位移曲线对比

    Figure  6.  Comparison of out-plane shear load-displacement curves of aluminum honeycomb sandwich panels with different face sheet thickness

    图  7  不同面板厚度铝蜂窝夹芯板面外剪切极限承载力和吸能量对比

    Figure  7.  Comparison of out-plane shear peak load and energy absorption of aluminum honeycomb sandwich panels with different face sheet thickness

    图  8  不同胞元尺寸铝蜂窝夹芯板面外剪切荷载-位移曲线对比

    Figure  8.  Comparison of out-plane shear load-displacement curves of aluminum honeycomb sandwich panels with different cell size

    图  9  不同胞元尺寸铝蜂窝夹芯板面外剪切极限承载力和吸能量对比

    Figure  9.  Comparison of out-plane shear peak load and energy absorption of aluminum honeycomb sandwich panels with different cell size

    图  10  不同芯层厚度铝蜂窝夹芯板面外剪切荷载-位移曲线对比

    Figure  10.  Comparison of out-plane shear load-displacement curves of aluminum honeycomb sandwich panels with different core height

    图  11  不同芯层厚度铝蜂窝夹芯板面外剪切极限承载力和吸能量对比(换柱状图)

    Figure  11.  Comparison of out-plane shear peak load and energy absorption of aluminum honeycomb sandwich panels with different core height

    图  12  铝蜂窝夹芯板面外剪切有限元模型

    Figure  12.  Finite element model of aluminum honeycomb sandwich panel for out-plane shear simulation

    图  13  整体性失效模式下铝蜂窝夹芯板面外剪切试验与数值模拟破坏过程对比

    Figure  13.  Comparison of failure process between numerical simulation and out-plane tests of aluminum honeycomb sandwich panel in integrated failure mode

    图  14  阶段性失效模式下铝蜂窝夹芯板面外剪切试验与数值模拟破坏过程对比

    Figure  14.  Comparison of failure process between numerical simulation and out-plane tests of aluminum honeycomb sandwich panel in phased failure mode

    图  15  铝蜂窝夹芯板面外剪切数值模拟与试验荷载-位移曲线对比

    Figure  15.  Comparison of load-displacement curves between numerical simulation and out-plane tests of aluminum honeycomb sandwich panel

    表  1  铝蜂窝夹芯板试件参数

    Table  1.   Specimen parameters of aluminum honeycomb sandwich panel

    Specimen
    label
    Core height
    H/mm
    Cell size
    a/mm
    Face sheet
    Thickness δ/mm
    JQ13030.4
    JQ23030.6
    JQ33030.8
    JQ43040.4
    JQ53040.6
    JQ63040.8
    JQ73050.4
    JQ83050.6
    JQ93050.8
    JQ102050.6
    JQ114050.6
    下载: 导出CSV

    表  2  铝蜂窝夹芯板各部分材料参数

    Table  2.   Material parameters of aluminum honeycomb sandwich panel

    PropertyFace sheet
    (AL1060)
    Core
    (AL3003H18)
    Shear head
    Density/(kg·m−3)273027007800
    Young’smodulus /GPa6969210
    Poisson’s ratio0.30.30.25
    Yield strength /MPa67123--
    Failure strain0.500.38--
    下载: 导出CSV
  • [1] 卢天健, 何德平, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4):517-535. doi: 10.3321/j.issn:1000-0992.2006.04.004

    LU Tianjian, HE Deping, CHENG Changqing, et al. The multi-functionality of ultra-light porous metals and their applicatons[J]. Advances in Mechanics,2006,36(4):517-535(in Chinese). doi: 10.3321/j.issn:1000-0992.2006.04.004
    [2] WANG Z. Recent advances in novel metallic honeycomb structure[J]. Composites Part B:Engineering,2019,166:731-741. doi: 10.1016/j.compositesb.2019.02.011
    [3] WANG F, WANG Y H, LIU J Y, et al. Theoretical and experimental study on carbon/epoxy facings-aluminum honeycomb sandwich structure using lock-in thermography[J]. Measurement,2018,126:110-119. doi: 10.1016/j.measurement.2018.05.055
    [4] GSA B, JZ A, SLA C, et al. Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading[J]. Thin-Walled Structures,2019,142:499-515. doi: 10.1016/j.tws.2019.04.029
    [5] 程小全, 寇长河, 郦正能. 复合材料夹芯板低速冲击后弯曲及横向静压特性[J]. 复合材料学报, 2000, 17(2):114-118. doi: 10.3321/j.issn:1000-3851.2000.02.026

    CHENG Xiaoquan, KOU Changhe, LI Zhengneng. Behavior of bending after low velocity impact and quasi-static transverse indentation of composite honeycomb core sandwich panels[J]. Acta Materiae Compositae Sinica,2000,17(2):114-118(in Chinese). doi: 10.3321/j.issn:1000-3851.2000.02.026
    [6] 张旭红, 王志华, 赵隆茂. 爆炸载荷作用下铝蜂窝夹芯板的动力响应[J]. 爆炸与冲击, 2009, 29(4):356-360. doi: 10.3321/j.issn:1001-1455.2009.04.004

    ZHANG Xuhong, WANG Zhihua, ZHAO Longmao. Dynamic responses of sandwich plates with aluminum honeycomb cores subjected to blast loading[J]. Explosion and Shock Waves,2009,29(4):356-360(in Chinese). doi: 10.3321/j.issn:1001-1455.2009.04.004
    [7] 姜立标, 习成, 李金水, 等. 铝蜂窝夹层材料在客车噪声控制的应用研究[J]. 汽车零部件, 2014, 3:29-32. doi: 10.3969/j.issn.1674-1986.2014.10.002

    JIANG Libiao, XI Cheng, LI Jinshui, et al. Researches on aluminum honeycomb sandwich material for noise control in coches[J]. Automobile Parts,2014,3:29-32(in Chinese). doi: 10.3969/j.issn.1674-1986.2014.10.002
    [8] 张超, 张军. 碳纤维铝蜂窝夹芯复合结构隔声性能研究[J]. 振动与冲击, 2020, 39(12):265-271.

    ZHANG Chao, ZHANG Jun. A study on sound insulation for sandwich structures with carbon fiber panel and aluminum honeycomb core[J]. Journal of Vibration and Shock,2020,39(12):265-271(in Chinese).
    [9] 丁延卫, 王晓耕, 张立华, 等. 碳纤维/铝蜂窝太阳翼基板热变形分析[J]. 航天器工程, 2009, 18(4):44-48. doi: 10.3969/j.issn.1673-8748.2009.04.008

    DING Yanwei, WANG Xiaogeng, ZHANG Lihua, et al. Analysis of thermal elastic deformation for solar array substrate with CFRP/aluminum honeycomb sandwich[J]. Spacecraft Engineering,2009,18(4):44-48(in Chinese). doi: 10.3969/j.issn.1673-8748.2009.04.008
    [10] 程文礼, 袁超, 邱启艳, 等. 航空用蜂窝夹层结构及制造工艺[J]. 航空制造技术, 2015, 7:94-98.

    CHENG Wenli, YUAN Chao, QIU Qiyan, et al. Honeycomb sandwich structure and manufacturing process in aviation industy[J]. Aeronautical Manufacturing Technology,2015,7:94-98(in Chinese).
    [11] 姜立标, 刘永浩, 刘金龙, 等. 铝蜂窝复合材料客车底板性能研究及应用[J]. 汽车零部件, 2014, 2:26-29. doi: 10.3969/j.issn.1674-1986.2014.11.014

    JIANG Libiao, LIU Yonghao, LIU Jinlong, et al. Performance research and application of aluminium honeycomb composite material used in bus-platform[J]. Automobile Parts,2014,2:26-29(in Chinese). doi: 10.3969/j.issn.1674-1986.2014.11.014
    [12] 许士华, 王俊, 王洪乙. 新型船用内装材料-铝蜂窝夹层复合板[J]. 舰船工程研究, 2005, 4:32-34.

    XU Shihua, WANG Jun, WANG Hongyi. A new type of interior decoration material -aluminum honeycomb sandwich panel[J]. Chinese Journal of Ship Research,2005,4:32-34(in Chinese).
    [13] FAN H L, MENG F H, YANG W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers[J]. Composite Structures,2007,81(4):533-539. doi: 10.1016/j.compstruct.2006.09.011
    [14] CAI L C, ZHANG D Y, ZHOU S H, et al. Investigation on mechanical properties and equivalent model of aluminum honeycomb sandwich panels[J]. Russian Microelectronics,2018,27(12):6585-6596.
    [15] 石姗姗, 陈秉智, 陈浩然, 等. Kevlar短纤维增韧碳纤维/铝蜂窝夹芯板三点弯曲与面内压缩性能[J]. 复合材料学报, 2017, 34(9):1953-1959.

    SHI Shanshan, CHEN Bingzhi, CHEN Haoran, et al. Three-point bending and in-plane compression properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica,2017,34(9):1953-1959(in Chinese).
    [16] 泮世东, 吴林志, 孙雨果. 含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式[J]. 复合材料学报, 2007, 24(6):121-127. doi: 10.3321/j.issn:1000-3851.2007.06.021

    PAN Shidong, WU Linzhi, SUN Yuguo. End compression failure of honeycomb sandwich panels containing interfacial debonding[J]. Acta Materiae Compositae Sinica,2007,24(6):121-127(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.06.021
    [17] 辛亚军, 肖博, 刘小蛮, 等. 蜂窝铝夹芯板准静态局压试验研究[J]. 机械强度, 2017, 39(3):518-526.

    XIN Yajun, XIAO Bo, LIU Xiaoman, et al. Quasi-static localized indentation tests on aluminum honeycomb sandwich panel[J]. Journal of Mechanical Strength,2017,39(3):518-526(in Chinese).
    [18] XIN Y J, YAN H M, YANG S, et al. Experimental study on the indentation of epoxy resin–aluminum honeycomb[J]. Mechanics of Advanced Materials and Structures,2021,28(9):904-918. doi: 10.1080/15376494.2019.1605009
    [19] LIN C, FATT M. Perforation of composite plates and sandwich panels under quasi-static and projectile loading[J]. Journal of Composite Materials,2006,40(20):1801-1840. doi: 10.1177/0021998306060173
    [20] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6):1352-1363.

    QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica,2020,37(6):1352-1363(in Chinese).
    [21] 辛亚军, 肖博, 刘小蛮, 等. 蜂窝铝夹芯板动态冲击试验研究[J]. 机械强度, 2018, 40(4):802-809.

    XIN Yajun, Zhang Liwei, LIU Xiaoman, et al. Impact test on aluminum honeycomb sandwich panels[J]. Journal of Mechanical Strength,2018,40(4):802-809(in Chinese).
    [22] ARSLAN K, GUNES R. Experimental damage evaluation of honeycomb sandwich structures with Al/B 4 C FGM face plates under high velocity impact loads[J]. Composite Structures,2018,202(10):304-312.
    [23] 俎政, 原天宇, 汤双双, 等. 蜂窝夹芯板多次低速冲击及冲击后剩余强度[J]. 科学技术与工程, 2019, 19(28):101-109. doi: 10.3969/j.issn.1671-1815.2019.28.014

    ZU Zheng, YUAN Tianyu, TANG Shuangshuang, et al. Repeated low velocity impacts on honeycomb sandwich panels and residual strength after impacts[J]. Science Technology and Engineering,2019,19(28):101-109(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.28.014
    [24] 张雨, 李应刚, 沈云龙, 等. 蜂窝金属夹芯板重复冲击动态响应研究[J]. 振动与冲击, 2021, 40(4):255-260.

    ZHENG Yu, LI Yinggang, SHEN Yunlong, et al. Dynamic responses of honeycomb sandwich panels under repeated impacts[J]. Journal of Vibration and Shock,2021,40(4):255-260(in Chinese).
    [25] HOU B, WANG Y, SUN T F, et al. On the quasi-static and impact responses of aluminum honeycomb under combined shear-compression[J]. Impact Engineering,2019,131(9):190-199.
    [26] ZhOU Q. MAYER R R. Characterization of aluminum honeycomb material failure in large deformation compression, shear, and tearing[J]. Journal of Engineering Materials and Technology,2002,124(4):412-420. doi: 10.1115/1.1491575
    [27] 闫慧明. 环氧树脂-蜂窝铝夹芯板面内压缩、剪切试验研究与数值模拟[J]. 燕山大学, 2020:34-42.

    YAN Huiming. Experimental research and numerical simulation of in-plane compression and shear of epoxy-honeycomb aluminum sandwich panel[J]. Master thesis, Yanshan University,2020:34-42(in Chinese).
  • 加载中
计量
  • 文章访问数:  167
  • HTML全文浏览量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 录用日期:  2021-11-18
  • 修回日期:  2021-11-13
  • 网络出版日期:  2021-12-11

目录

    /

    返回文章
    返回