留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏高岭土-矿渣地聚物宏观性能试验及Lasso回归模型

钟卿瑜 粟淼 彭晖

钟卿瑜, 粟淼, 彭晖. 偏高岭土-矿渣地聚物宏观性能试验及Lasso回归模型[J]. 复合材料学报, 2022, 39(0): 1-12
引用本文: 钟卿瑜, 粟淼, 彭晖. 偏高岭土-矿渣地聚物宏观性能试验及Lasso回归模型[J]. 复合材料学报, 2022, 39(0): 1-12
Qingyu ZHONG, Miao SU, Hui PENG. Experiment and Lasso regression model of the macroscopic performance of metakaolin-slag geopolymer paste[J]. Acta Materiae Compositae Sinica.
Citation: Qingyu ZHONG, Miao SU, Hui PENG. Experiment and Lasso regression model of the macroscopic performance of metakaolin-slag geopolymer paste[J]. Acta Materiae Compositae Sinica.

偏高岭土-矿渣地聚物宏观性能试验及Lasso回归模型

基金项目: 国家自然科学基金(51878068);湖南省研究生科研创新项目(CX2019653)
详细信息
    通讯作者:

    彭晖,博士,教授,博士生导师,研究方向为地聚物的合成及结构工程应用 E-mail:huipeng@csust.edu.cn

  • 中图分类号: TU52

Experiment and Lasso regression model of the macroscopic performance of metakaolin-slag geopolymer paste

  • 摘要: 设计120组偏高岭土-矿渣地聚物净浆试验,探讨了碱激发剂浓度、模数、液固比这三个变量对地聚物净浆抗压强度、流动度和凝结时间的影响规律。基于获得的试验数据,建立Lasso多元回归模型预测了偏高岭土-矿渣地聚物净浆7天和28天抗压强度、流动度、初凝以及终凝时间。试验结果表明:(1) 抗压强度随碱激发剂浓度的增大而提高,随液固比增大而降低,随模数的增大先提高后降低,偏高岭土-矿渣地聚物净浆28天抗压强度在11.5~76.4 MPa之间;(2) 液固比增大,凝结时间延长;而模数和浓度对凝结时间的影响由碱激发剂的硅含量和碱含量决定,偏高岭土-矿渣地聚物净浆的初凝时间在59~339 min之间,初凝时间与终凝时间相差不超过10 min;(3) 流动度主要与碱激发剂的粘稠程度和液固比有关,偏高岭土-矿渣地聚物净浆的流动度在88~300 mm之间。模型验证结果表明:采用Lasso算法对回归模型进行正则化,避免了回归系数过大而导致的过拟合现象,提出的回归模型能准确预测偏高岭土-矿渣地聚物净浆各项宏观性能,测试集数据中的预测值与试验值的相关性系数均大于0.92。

     

  • 图  1  MK和GGBFS的XRD图谱

    Figure  1.  XRD patterns of MK and GGBFS

    图  2  液固比为1.3时模数对偏高岭土-矿渣地聚物净浆抗压强度的影响

    Figure  2.  Effect of the modulus on the compressive strength of metakaolin-slag geopolymer pastes with liquid-to-solid ratio of 1.3

    图  3  模数为1.2时浓度和液固比对偏高岭土-矿渣地聚物净浆抗压强度的影响

    Figure  3.  Effect of the concentration and the liquid-solid ratio on the compressive strength of metakaolin-slag geopolymer pastes with modulus of 1.2

    图  4  液固比为0.9时浓度和模数对偏高岭土-矿渣地聚物净浆流动度的影响

    Figure  4.  Effect of concentration and modulus on fluidity of metakaolin-slag geopolymer slurries with liquid-to-solid ratio of 0.9

    图  5  碱激发剂参数对碱激发剂黏度的影响

    Figure  5.  Influence of parameters of alkaline activator on viscosity of alkaline activator

    图  6  模数为1.4时液固比对偏高岭土-矿渣地聚物净浆流动度的影响

    Figure  6.  Effect of the liquid-solid ratio on fluidity of metakaolin-slag geopolymer slurries with modulus of 1.4

    图  7  液固比为1.5时浓度对偏高岭土-矿渣地聚物净浆凝结时间的影响

    Figure  7.  Effect of the concentration on setting times of metakaolin-slag geopolymer slurries with liquid-to-solid ratio of 1.5

    图  9  浓度为0.31时模数和液固比对偏高岭土-矿渣地聚物净浆凝结时间的影响

    Figure  9.  Effect of the modulus and the liquid solid ratio on setting times of metakaolin-slag geopolymer slurries with concentration of 0.31

    图  8  模数为1.4、液固比为1.5时不同浓度下偏高岭土-矿渣地聚物净浆的反应放热速率曲线

    Figure  8.  Reaction exothermic rate curve of metakaolin-slag geopolymer pastes with different concentration when the modulus is 1.4 and the liquid-solid ratio is 1.5

    图  10  浓度为0.31、液固比为1.1时不同模数下偏高岭土-矿渣地聚物净浆的反应放热速率曲线

    Figure  10.  The reaction exothermic rate curve of metakaolin-slag geopolymer pastes with different modulus when the concentration is 0.31 and the liquid-solid ratio is 1.1

    图  11  浓度为0.31、模数为1.4时不同液固比下偏高岭土-矿渣地聚物净浆反应放热速率曲线

    Figure  11.  The reaction exothermic rate curve of metakaolin-slag geopolymer pastes with different L/S when the concentration is 0.31 and the modulus is 1.4

    图  12  偏高岭土-矿渣地聚物净浆7天抗压强度的试验值和预测值

    Figure  12.  Predicted results versus experimental results for the 7-day compressive strength of metakaolin-slag geopolymer pastes

    图  13  偏高岭土-矿渣地聚物净浆28天抗压强度的试验值和预测值

    Figure  13.  Predicted results versus experimental results for the 28-day compressive strength of metakaolin-slag geopolymer pastes

    图  14  偏高岭土-矿渣地聚物净浆流动度的试验值和预测值

    Figure  14.  Predicted results versus experimental results for the fluidity of metakaolin-slag geopolymer pastes

    图  15  偏高岭土-矿渣地聚物净浆初凝时间的试验值和预测值

    Figure  15.  Predicted results versus experimental results for the initial setting time of metakaolin-slag geopolymer pastes

    图  16  偏高岭土-矿渣地聚物净浆终凝时间的试验值和预测值

    Figure  16.  Predicted results versus experimental results for the final setting time of metakaolin-slag geopolymer pastes

    表  1  偏高岭土(MK)和粒化高炉矿渣(GGBFS)的粒度指标

    Table  1.   Particle size index of metakaolin (MK) and ground granulated blast furnace slag (GGBFS)

    MaterialD10/mmD50/mmD90/mm
    MK0.5160.8193.742
    GGBFS1.3894.44710.554
    下载: 导出CSV

    表  2  MK和GGBFS的化学组成

    Table  2.   Chemical composition of MK and GGBFS

    Mass fraction of chemical composition/wt%MKGGBFS
    SiO252.5330.23
    Al2O345.4213.72
    CaO0.2644.06
    MgO-5.58
    SO30.043.16
    TiO20.971.79
    K2O0.180.50
    Fe2O3-0.41
    Others0.600.55
    下载: 导出CSV

    表  3  偏高岭土-矿渣地聚物强度和工作性能影响因素及水平

    Table  3.   Influencing factors and levels of compressive strength and working performance of metakaolin-slag geopolymer pastes

    FactorsLevels
    Concentration C0.23, 0.27, 0.31, 0.350.39
    Modulus M1, 1.2, 1.4, 1.6,1.81, 1.2, 1.4, 1.6
    Liquid-to-solid ratio0.9, 1.1, 1.3, 1.5, 1.70.9, 1.1, 1.3, 1.5, 1.7
    下载: 导出CSV

    表  4  数据集中各变量的统计指标值

    Table  4.   Statistical measurements of the variables in the dataset

    Variablex1x2x3σ7d /MPaσ28d /MPaf /mmTi /minTf /min
    Minimum0.231.000.909.9011.4988.0059.0065.00
    Maximum0.391.801.7075.4076.40300.00337.00340
    Mean0.311.401.3033.6638.92193.80143.45149.88
    Standard deviation0.060.290.2816.3016.2253.3968.1568.26
    Notes:x1 is the concentration of alkaline activator, x2 is the modulus of alkaline activator, x3 is the liquid-solid ratio of alkaline activator, σ7d and σ28d are 7-day compressive strength and 28-day compressive strength of metakaolin-slag geopolymer pastes, f is fluidity of metakaolin-slag geopolymer pastes, Ti and Tf are initial setting time and final setting time of metakaolin-slag geopolymer pastes.
    下载: 导出CSV

    表  5  偏高岭土-矿渣地聚物净浆预测值与试验值的相关系数

    Table  5.   Correlation coefficients between predicted values and experimental values of metakaolin-slag geopolymer pastes

    Macroscopic propertiesCorrelation coefficients (COD)
    Training procedureTest procedure
    Compressive strength(7 d)0.9800.946
    Compressive strength(28 d)0.9400.929
    Fluidity0.9840.989
    Initial setting time0.9430.926
    Final setting time0.9430.926
    下载: 导出CSV
  • [1] WU Y, LU B, BAI T, et al. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges[J]. Construction and Building Materials,2019,224:930-949. doi: 10.1016/j.conbuildmat.2019.07.112
    [2] 阚黎黎, 段贝贝, 闫涛 高延性纤维增强偏高岭土-粉煤灰基地聚合物在不同环境下的自愈合性能[J]. 复合材料学报, 2018, 35(10): 2841-2850.

    KAN L L, DUAN B B, YAN T. Self-healing characteristics of engineered geopolymer composites incorporating metakaolin and fly ash under different environments [J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2841-2850. (in Chinese)
    [3] 杨达, 卢明阳, 宋迪, 等. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(S1):644-649.

    YANG D, LU M Y, SONG D, et al. Research Progress of Geopolymer Cement[J]. Materials Reports,2021,35(S1):644-649(in Chinese).
    [4] 陈潇, 张浩宇, 霍神焕, 等. 壳聚糖改性地聚合物的力学及吸附性能[J]. 复合材料学报, 2019, 36(12):2959-2967.

    CHEN X, ZHANG H Y, HUO S H, et al. Mechanical and adsorption properties of the geopolymer modified by Chitosan[J]. Acta Materiae Compositae Sinica,2019,36(12):2959-2967(in Chinese).
    [5] LING Y, WANG K, WANG X, et al. Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer[J]. Construction and Building Materials,2019,228:116763. doi: 10.1016/j.conbuildmat.2019.116763
    [6] 宋学锋, 郭渊飞 苯丙乳液-矿渣地聚物泡沫复合材料制备及性能[J]. 复合材料学报, 1-14.

    SONG X F, GUO Y F. Preparation and performance of styrene acrylic emulsion-slag geopolymer foam composite [J]. Acta Materiae Compositae Sinica, 2022 , 39. (in Chinese)
    [7] JOHN S K, NADIR Y, GIRIJA K. Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review[J]. Construction and Building Materials,2021,280:122443. doi: 10.1016/j.conbuildmat.2021.122443
    [8] 蒋威. 偏高岭土—矿渣基无机矿物聚合物组成设计及性能研究 [D]. 沈阳建筑大学, 2016.

    JIANG W. Research on composition and performance of geopolymer based on metakaolin and slag [D]. Shenyang architecture university, 2016. (in Chinese)
    [9] 陈迎晓. 矿渣-偏高岭土基地聚合物凝结时间可控性研究 [D]. 重庆大学, 2018.

    CHEN Y X. Research on the controlling of setting time of slag-metakaolin geopolymer [D]. Chongqing University, 2018. (in Chinese)
    [10] YIP C K, LUKEY G C, VAN DEVENTER J S J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation[J]. Cement and Concrete Research,2005,35(9):1688-1697. doi: 10.1016/j.cemconres.2004.10.042
    [11] 崔潮, 彭晖, 刘扬, 等. 矿渣掺量及激发剂模数对偏高岭土基地聚物常温固化的影响[J]. 建筑材料学报, 2017, 20(4):535-542. doi: 10.3969/j.issn.1007-9629.2017.04.008

    CUI C, PENG H, LIU Y, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature[J]. Journal of Building Materials,2017,20(4):535-542(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.04.008
    [12] 彭晖, 李一聪, 罗冬, 等. 碱激发偏高岭土/矿渣复合胶凝体系反应水平及影响因素分析[J]. 建筑材料学报, 2020, 23(6):1390-1397. doi: 10.3969/j.issn.1007-9629.2020.06.018

    PENG H, LI Y C, LUO D, et al. Analysis of reaction level and factors of alkali activated metakaolin/GGBFS[J]. Journal of Building Materials,2020,23(6):1390-1397(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.06.018
    [13] BURCIAGA-DíAZ O, MAGALLANES-RIVERA R X, ESCALANTE-GARCíA J I. Alkali-activated slag-metakaolin pastes: strength, structural, and microstructural characterization %J Journal of Sustainable Cement-Based Materials[J]. 2013, 2(2):
    [14] 马国伟, 王德华, 钟惟亮, 等. 粒化高炉矿渣粉替代量对偏高岭土基地质聚合物力学性能及凝结时间影响的研究[J]. 实验力学, 2019, 34(5):767-774.

    MA G W, WANG D H, ZHONG W L, et al. The effects of GGBS and modulus of water glass on the hardening behavior of metakaolin base geopolymer under normal temperature curing[J]. Journal of Experimental Mechanics,2019,34(5):767-774(in Chinese).
    [15] 傅博, 程臻赟, 韩静云, 等. 碱偏高岭土矿渣地聚合物砂浆强度及新拌性能研究[J]. 硅酸盐通报, 2019, 38(12):4013-4020.

    FU B, CHENG Z Y, HAN J Y, et al. Strength and fresh properties of alkali activated metakaolin slag geopolymer mortar[J]. Bulletin of the Chinese Ceramic Society,2019,38(12):4013-4020(in Chinese).
    [16] BURCIAGA-DíAZ O, MAGALLANES-RIVERA R X, ESCALANTE-GARCíA J I. Alkali-activated slag-metakaolin pastes: strength, structural, and microstructural characterization[J]. Journal of Sustainable Cement-Based Materials,2013,2(2):111-127. doi: 10.1080/21650373.2013.801799
    [17] 张涛, 王才进, 刘松玉, 等. 基于ANN的岩土体热阻系数预测模型研究[J]. 建筑材料学报, 2020, 23(2):381-391.

    ZHANG T, WANG C J, LIU S Y, et al. Prediction model of thermal resistivity of geomaterial based on artificial neural network[J]. Journal of Building Materials,2020,23(2):381-391(in Chinese).
    [18] SU M, ZHONG Q Y, PENG H, et al. Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete[J]. Construction and Building Materials,2021,270:121456. doi: 10.1016/j.conbuildmat.2020.121456
    [19] SU M, PENG H, YUAN M, et al. Identification of the interfacial cohesive law parameters of FRP strips externally bonded to concrete using machine learning techniques[J]. Engineering Fracture Mechanics,2021,247:107643. doi: 10.1016/j.engfracmech.2021.107643
    [20] 中华人民共和国建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009.

    People's Republic of China Ministry of construction. Test method for basic properties of building mortar: JGJ/T 70—2009: GB/T 8077—2012[S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)
    [21] 中国国家标准化管理委员会. 混凝土外加剂匀质性试验方法: GB/T 8077—2012[S]. 北京: 中国标准出版社, 2012.

    Standardization Administration. Methods for testing uniformity of concrete admixture: GB/T 8077—2012[S]. Beijing: China Standards Press, 2012. (in Chinese)
    [22] 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2011.

    Standardization Administration. Test methods for water requirement of normal consistency, setting time and soundness of the portland cement: GB/T 1346—2011[S]. Beijing: China Standards Press, 2011. (in Chinese)
    [23] 曹德光, 苏达根, 宋国胜 低模数硅酸钠溶液的结构及其键合反应特性[J]. 硅酸盐学报, 2004, 32(8): 1036-1039.

    CAO D G, SU D G, SONG G S. Geopolymer behavior and structure of low modulus sodium silicate solutions [J]. Journal of the Chinese Ceramic Society, 2004, 32(8): 1036-1039(in Chinese)
    [24] GEBREGZIABIHER B S, THOMAS R, PEETHAMPARAN S. Very early-age reaction kinetics and microstructural development in alkali-activated slag[J]. Cement and Concrete Composites,2015,55:91-102. doi: 10.1016/j.cemconcomp.2014.09.001
    [25] BUCHWALD A, ZELLMANN H-D, KAPS C. Condensation of aluminosilicate gels—model system for geopolymer binders[J]. Journal of Non-Crystalline Solids,2010,357(5):1376-1382.
    [26] BIGNOZZI M C, MANZI S, NATALI M E, et al. Room temperature alkali activation of fly ash: The effect of Na2O/SiO2 ratio[J]. Construction and Building Materials,2014,69:262-270. doi: 10.1016/j.conbuildmat.2014.07.062
    [27] KHEDMATI M, ALANAZI H, KIM Y-R, et al. Effects of Na2O/SiO2 molar ratio on properties of aggregate-paste interphase in fly ash-based geopolymer mixtures through multiscale measurements[J]. Construction and Building Materials,2018,191:564-574. doi: 10.1016/j.conbuildmat.2018.10.024
    [28] RUIZ-SANTAQUITERIA C, SKIBSTED J, FERNáNDEZ-JIMéNEZ A, et al. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates[J]. Cement and Concrete Research,2012,42(9):1242-1251. doi: 10.1016/j.cemconres.2012.05.019
    [29] 梁健俊. 水玻璃模数与矿渣掺量对碱激发粉煤灰/矿渣复合体系的影响 [D]. 广州大学, 2017.

    LIANG J J. Effect of the activator modulus and slag content on alkali activated fly ash/slag blended system[D]. Guangzhou University, 2017. (in Chinese)
    [30] HASNAOUI A, GHORBEL E, WARDEH G. Optimization approach of granulated blast furnace slag and metakaolin based geopolymer mortars[J]. Construction and Building Materials,2019,198:10-26. doi: 10.1016/j.conbuildmat.2018.11.251
    [31] KHALIL M G, ELGABBAS F, EL-FEKY M S, et al. Performance of geopolymer mortar cured under ambient temperature[J]. Construction and Building Materials,2020,242:118090. doi: 10.1016/j.conbuildmat.2020.118090
    [32] ARNOULT M, PERRONNET M, AUTEF A, et al. How to control the geopolymer setting time with the alkaline silicate solution[J]. Journal of Non-Crystalline Solids,2018,495:59-66. doi: 10.1016/j.jnoncrysol.2018.02.036
    [33] SHI Z, SHI C, WAN S, et al. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars[J]. Cement and Concrete Research,2018,111:104-115. doi: 10.1016/j.cemconres.2018.06.005
    [34] DURAN ATIŞ C, BILIM C, ÇELIK Ö, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar[J]. Construction and Building Materials,2009,23(1):548-555. doi: 10.1016/j.conbuildmat.2007.10.011
    [35] WENG L, SAGOE-CRENTSIL K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems[J]. Journal of Materials Science,2007,42(9):2997-3006. doi: 10.1007/s10853-006-0820-2
    [36] ABUODEH O R, ABDALLA J A, HAWILEH R A. Prediction of shear strength and behavior of RC beams strengthened with externally bonded FRP sheets using machine learning techniques[J]. Composite Structures,2020,234:111698. doi: 10.1016/j.compstruct.2019.111698
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2021-12-24
  • 修回日期:  2021-12-09
  • 网络出版日期:  2022-01-10

目录

    /

    返回文章
    返回