留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制

朱思雨 张巧君 洪智亮 荆开开 管皞阳 程赞粼 刘永胜 王波 张程煜

朱思雨, 张巧君, 洪智亮, 等. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制[J]. 复合材料学报, 2023, 40(1): 464-471. doi: 10.13801/j.cnki.fhclxb.20220211.001
引用本文: 朱思雨, 张巧君, 洪智亮, 等. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制[J]. 复合材料学报, 2023, 40(1): 464-471. doi: 10.13801/j.cnki.fhclxb.20220211.001
ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 464-471. doi: 10.13801/j.cnki.fhclxb.20220211.001
Citation: ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 464-471. doi: 10.13801/j.cnki.fhclxb.20220211.001

平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制

doi: 10.13801/j.cnki.fhclxb.20220211.001
基金项目: 国家自然科学基金(51572224;U2241239);高等学校学科创新引智计划(BP0820014);国家重点研发计划(2017YFB1103504)
详细信息
    通讯作者:

    张程煜,博士,教授,博士生导师,研究方向为材料的高温力学性能 E-mail: cyzhang@nwpu.edu.cn

  • 中图分类号: TB332

Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature

Funds: National Natural Science Foundation of China (51572224; U2241239); Programme of Introducing Talents of Discipline to Universities (BP0820014); National Key Research and Development Program of China (2017YFB1103504)
  • 摘要: 碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是制造下一代航空发动机热结构件的关键材料,中等温度(~800℃)下,SiCf/SiC的蠕变断裂时间tu显著下降。为此,研究了平纹编织SiCf/SiC (2D-SiCf/SiC)在空气中500~1000℃的蠕变性能及损伤机制,应力水平为100~160 MPa。利用SEM、TEM和EDS分析了断口形貌、微观组织和化学成分。结果表明:2D-SiCf/SiC的tu与温度和应力水平有关。相同温度下,2D-SiCf/SiC的tu随着应力增加而变短。当温度为800℃、蠕变应力大于基体开裂应力(PLS)时,2D-SiCf/SiC发生中温脆化现象,其tu下降。2D-SiCf/SiC的中温脆化机制为基体开裂、BN界面氧化和SiO2替代BN界面导致的强界面/基体结合。2D-SiCf/SiC的tu与应力在对数坐标下呈线性关系,且在过渡应力时发生线性转变,过渡应力与PLS一致。提高PLS能够有效提高SiCf/SiC的tu

     

  • 图  1  平纹编织碳化硅纤维增强碳化硅复合材料(2D-SiCf/SiC)的拉伸和蠕变试样尺寸与形状

    Figure  1.  Dimensions and shape of the tensile and creep testing of plain weave silicon carbide fiber reinforced silicon carbide composites (2D-SiCf/SiC)

    R—Transitional radius

    图  2  2D-SiC/SiC的室温拉伸应力-应变曲线

    Figure  2.  Tensile stress-strain curves of 2D-SiCf/SiC at room temperatures

    图  3  2D-SiCf/SiC在120 MPa不同温度条件下的蠕变曲线

    Figure  3.  Creep curves at 120 MPa under different temperatures for 2D-SiCf/SiC composite

    图  4  2D-SiCf/SiC在800℃的应力-蠕变断裂时间曲线

    Figure  4.  Stress-creep rupture time curves of 2D-SiCf/SiC at 800℃

    CVI—Chemical vapor infiltration; MI—Melt infiltration

    图  5  2D-SiCf/SiC试样的蠕变断口SEM图像:(a) 500℃/120 MPa,蠕变断裂时间tu=490 h;(b) 800℃/120 MPa,tu=22 h;(c) 1000℃/120 MPa,tu=33 h

    Figure  5.  SEM images of fracture surface of 2D-SiCf/SiC specimen: (a) 500℃/120 MPa, creep rupture time tu=490 h; (b) 800℃/120 MPa, tu=22 h; (c) 1000℃/120 MPa, tu=33 h

    图  6  蠕变应力为120 MPa时,不同蠕变温度下2D-SiCf/SiC试样断口氧化区的SEM图像:(a) 500℃;(b) 800℃及区域孔洞放大照片;(c) 1000℃

    Figure  6.  SEM images of the oxidation zones of 2D-SiCf/SiC crept at different temperatures with stress of 120 MPa: (a) 500℃; (b) 800℃ and enlarged image of the voids; (c) 1000℃

    图  7  原始2D-SiCf/SiC的界面TEM图像

    Figure  7.  TEM image of the interface of the as-received 2D-SiCf/SiC

    图  8  2D-SiCf/SiC在800℃/120 MPa蠕变断裂后氧化区的界面TEM图像和成分分布:(a) TEM;(b) N、Si、O和C元素的EDS图像

    Figure  8.  TEM and EDS images of the interface of the embrittlement area for the 2D-SiCf/SiC crept at 800℃/120 MPa: (a) TEM image; (b) EDS images showing the distribution of element N, Si, O and C

    图  9  SiCf/SiC复合材料应力-蠕变断裂时间图

    Figure  9.  Stress-creep rupture time diagram of the SiCf/SiC composites

    表  1  2D-SiCf/SiC的中温蠕变性能

    Table  1.   Creep properties of 2D-SiCf/SiC at intermediate temperature

    Temperature/
    Stress/
    MPa
    Rupture
    time/h
    Steady-state creep
    strain rate/s−1
    500 110 500+ 4.0×10−10
    120 490 7.1×10−10
    160 64 1.4×10−8
    800 100 145+ 1.2×10−9
    110 24 3.9×10−9
    120 22 5.4×10−9
    120 10 9.0×10−9
    120 8 7.3×10−9
    160 4 7.9×10−9
    160 6 9.1×10−9
    1000 100 195+ 9.1×10−10
    110 119 5.3×10−9
    120 33 1.7×10−8
    下载: 导出CSV
  • [1] SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica,2004,55(3-9):409-420. doi: 10.1016/j.actaastro.2004.05.052
    [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [3] WANG X, SONG Z, CHENG Z, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society,2020,40(14):4872-4878. doi: 10.1016/j.jeurceramsoc.2020.01.033
    [4] 李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报, 2001, 15(1):45-49. doi: 10.3321/j.issn:1005-023X.2001.01.016

    LI Shibo, XU Yongdong, ZHANG Litong. Study on silicon carbide fibers reinforced ceramic matrix composites[J]. Materials Review,2001,15(1):45-49(in Chinese). doi: 10.3321/j.issn:1005-023X.2001.01.016
    [5] MORSCHER G N, CAWLEY J D. Intermediate temperature strength degradation in SiC/SiC composites[J]. Journal of the European Ceramic Society,2002,22(14-15):2777-2787. doi: 10.1016/S0955-2219(02)00144-9
    [6] 李锦涛, 王波, 杨扬, 等. 考虑氧化损伤的陶瓷基复合材料弹性模量多尺度预测模型[J]. 复合材料学报, 2021, 38(10):3432-3442.

    LI Jintao, WANG Bo, YANG Yang, et al. A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage[J]. Acta Materiae Compositae Sinica,2021,38(10):3432-3442(in Chinese).
    [7] DICARLO J A. Advances in SiC/SiC composites for aero-propulsion[M]. New York: John Wiley & Sons, LTD., 2014: 217-235.
    [8] BHATT R T. Creep and cyclic fatigue durability of 3D woven SiC/SiC composites with (CVI+PIP) hybrid matrix[C]//Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration. NASA:Washington D.C., 2017.
    [9] NASLAIN R R. The design of the fibre-matrix interfacial zone in ceramic matrix composites[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9-10):1145-1155. doi: 10.1016/S1359-835X(97)00128-0
    [10] GALLET S L, REBILLAT F, GUETTE A, et al. Influence of a multilayered matrix on the lifetime of SiC/BN/SiC minicomposites[J]. Journal of Materials Science,2004,39(6):2089-2097. doi: 10.1023/B:JMSC.0000017771.93067.42
    [11] BHATT R T, CHOI S R, COSGRIFF L M, et al. Impact resistance of environmental barrier coated SiC/SiC composites[J]. Materials Science and Engineering: A,2008,476(1-2):8-19. doi: 10.1016/j.msea.2007.04.067
    [12] SULLIVAN R M. Time-dependent stress rupture strength of Hi-Nicalon fiber-reinforced silicon carbide composites at intermediate temperatures[J]. Journal of the Eupean Ceramic Society,2016,36(8):1885-1892. doi: 10.1016/j.jeurceramsoc.2016.02.043
    [13] BREWER D. HSR/EPM combustor materials development program[J]. Materials Science and Engineering: A,1999,261(1-2):284-291. doi: 10.1016/S0921-5093(98)01079-X
    [14] UDAYAKUMAR A, RAOLE P M, BALASUBRAMANIAN M. Synthesis of tailored 2D SiCf/SiC ceramic matrix composites with BN/C interphase through ICVI[J]. Journal of Nuclear Materials,2011,417(1-3):363-366. doi: 10.1016/j.jnucmat.2010.12.253
    [15] 王西, 王克杰, 柏辉, 等. 化学气相渗透2D-SiCf/SiC复合材料的蠕变性能及损伤机理[J]. 无机材料学报, 2020, 35(7):817-821.

    WANG Xi, WANG Kejie, BAI Hui, et al. Creep properties and damage mechanism of 2D-SiCf/SiC composites prepared by CVI[J]. Journal of Inorganic Materials,2020,35(7):817-821(in Chinese).
    [16] RUGGLES-WRENN M B, JONES T P. Tension-compression fatigue of a SiC/SiC ceramic matrix composite at elevated temperature[J]. Journal of Engineering for Gas Turbines & Power,2012,134(9):091301. doi: 10.1115/1.4006989
    [17] MORSCHER G N, OJARD G, MILLER R, et al. Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: Retained properties, damage development, and failure mechanisms[J]. Composites Science and Technology,2008,68(15):3305-3313.
    [18] DUGNE O, PROUHET S, GUETTE A, et al. Interface characterization by TEM, AES and SIMS in tough SiC (ex-PCS) fibre-SiC (CVI) matrix composites with a BN interphase[J]. Journal of Materials Science,1993,28(13):3409-3422. doi: 10.1007/BF01159815
    [19] HEREDIA F E, MCNULTY J C, ZOK F W, et al. Oxidation embrittlement probe for ceramic-matrix composites[J]. Journal of the American Ceramic Society,1995,78(8):2097-2100. doi: 10.1111/j.1151-2916.1995.tb08621.x
    [20] MORSCHER G N. Tensile stress rupture of SiCf/SiCm minicomposites with carbon and boron nitride interphases at elevated temperatures in air[J]. Journal of the American Ceramic Society,1997,80(8):2029-2042.
    [21] ZHOU J, CHENG L F, YE F, et al. Effects of heat treatment on mechanical and dielectric properties of 3D Si3N4f/BN/Si3N4 composites by CVI[J]. Journal of the European Ceramic Society,2020,40(15):5305-5315. doi: 10.1016/j.jeurceramsoc.2020.06.018
    [22] JACOBSON N S, MORSCHER G N, BRYANT D R, et al. High-temperature oxidation of boron nitride: II, boron nitride layers in composites[J]. Journal of the American Ceramic Society,1999,82(6):1473-1482.
    [23] JACOBSON N S, MYERS D L. Active oxidation of SiC[J]. Oxidation of Metals,2011,75(1):1-25.
    [24] LAROCHELLE K J, MORSCHER G N. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature—Part I[J]. Applied Composite Materials,2006,13(3):147-172. doi: 10.1007/s10443-006-9009-8
    [25] MORSCHER G N, HURST J, BREWER D. Intermediate temperature stress rupture of a woven Hi-Nicalon, BN interphase, SiC matrix composite in air[J]. Journal of the American Ceramic Society,2000,83(6):1441-1449. doi: 10.1111/j.1151-2916.2000.tb01408.x
    [26] XU W B, ZOK F W, MCMEEKING R M, et al. Model of oxidation-induced fiber fracture in SiC/SiC composites[J]. Journal of the American Ceramic Society,2014,97(11):3676-3683. doi: 10.1111/jace.13180
    [27] LIU Z L, YUE J L, FU Z Y, et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500°C in air[J]. Journal of the European Ceramic Society,2020,40(8):2821-2827. doi: 10.1016/j.jeurceramsoc.2019.04.013
    [28] HUI M, CHENG L. Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms[J]. Carbon,2009,47(4):1034-1042. doi: 10.1016/j.carbon.2008.12.025
    [29] ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J]. Composites Science and Technology,1999,59(6):833-851. doi: 10.1016/S0266-3538(99)00014-7
    [30] MORSCHER G N, GYEKENYESI J Z, BHATT R T. Damage accumulation in 2D woven SiC/SiC ceramic matrix composites[C]//Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components. Ohio Aerospace Institute, NASA Glenn Research Center : Cleveland, 2000.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1416
  • HTML全文浏览量:  505
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2022-01-10
  • 录用日期:  2022-01-20
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回