Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature
-
摘要: 碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是制造下一代航空发动机热结构件的关键材料,中等温度(~800℃)下,SiCf/SiC的蠕变断裂时间tu显著下降。为此,研究了平纹编织SiCf/SiC(2D-SiCf/SiC)在空气中500~1000℃的蠕变性能及损伤机理,应力水平为100~160 MPa。利用SEM、TEM和EDS分析了断口形貌、微观组织和化学成分。结果表明:2D-SiCf/SiC的tu与温度和应力水平有关。相同温度下,2D-SiCf/SiC的tu随着应力增加而变短。当温度为800℃、蠕变应力大于基体开裂应力(PLS)时,2D-SiCf/SiC发生中温脆化现象,其tu下降。2D-SiCf/SiC的中温脆化机制为基体开裂、BN界面氧化和SiO2替代BN界面导致的强界面/基体结合。2D-SiCf/SiC的tu与应力在对数坐标下呈线性关系,且在过渡应力时发生线性转变,过渡应力与PLS一致。提高PLS能够有效提高SiCf/SiC的tu。
-
关键词:
- SiCf/SiC复合材料 /
- 蠕变断裂时间 /
- BN界面 /
- 氧化 /
- 损伤机理
Abstract: Silicon carbide fiber reinforced silicon carbide composites (SiCf/SiC) have great potential to be used in the thermal structure of next-generation aero-engines. The creep rupture time tu of SiCf/SiC is significantly reduced at intermediate temperatures (~800℃). Therefore, this paper investigated the creep rupture behaviors of a plain weave SiCf/SiC (2D-SiCf/SiC) at 500℃, 800℃ and 1000℃ with stresses of 100 to 160 MPa in air. The morphology, microstructure and compositions of the crept specimens were observed by a scanning electron microscope, a high-resolution transmission electron microscope and a energy dispersive spectrometer. The results show that the creep rupture time of 2D-SiCf/SiC is closely related to the applied temperatures and stresses. At the same temperature, tu decreases with the increasing stresses at constant temperatures. When the temperature is 800℃ and the stress is greater than the proportional limit stress (PLS), embrittlement takes place for the 2D-SiCf/SiC, which means the tu and the total creep strain are much shorter than those at 500℃ and 1000℃. The embrittlement mechanisms involve matrix cracking, oxidization of BN and formation of strong fiber/matrix interphase bonding by the filling of SiO2, as well as for the 2D-SiCf/SiC at intermediate temperatures. tu vs. the applied stress follows linear relationship in logarithmic axis, whose transition appears when the applied stress equals to PLS.-
Key words:
- SiCf/SiC composites /
- creep rupture time /
- BN interphase /
- oxidation /
- damage mechanisms
-
表 1 2D-SiCf/SiC的中温蠕变性能
Table 1. Creep properties of 2D-SiCf/SiC at intermediate temperature
Temperature/
℃Stress/
MPaRupture
time/hSteady-state creep
strain rate/s−1500 110 500+ 4.0×10−10 120 490 7.1×10−10 160 64 1.4×10−8 800 100 145+ 1.2×10−9 110 24 3.9×10−9 120 22 5.4×10−9 120 10 9.0×10−9 120 8 7.3×10−9 160 4 7.9×10−9 160 6 9.1×10−9 1000 100 195+ 9.1×10−10 110 119 5.3×10−9 120 33 1.7×10−8 -
[1] SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica,2004,55(3-9):409-420. doi: 10.1016/j.actaastro.2004.05.052 [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001 [3] WANG X, SONG Z, CHENG Z, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society,2020,40(14):4872-4878. doi: 10.1016/j.jeurceramsoc.2020.01.033 [4] 李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报, 2001, 15(1):45-49. doi: 10.3321/j.issn:1005-023X.2001.01.016LI Shibo, XU Yongdong, ZHANG Litong. Study on silicon carbide fibers reinforced ceramic matrix composites[J]. Materials Review,2001,15(1):45-49(in Chinese). doi: 10.3321/j.issn:1005-023X.2001.01.016 [5] MORSCHER G N, CAWLEY J D. Intermediate temperature strength degradation in SiC/SiC composites[J]. Journal of the European Ceramic Society,2002,22(14-15):2777-2787. doi: 10.1016/S0955-2219(02)00144-9 [6] 李锦涛, 王波, 杨扬, 等. 考虑氧化损伤的陶瓷基复合材料弹性模量多尺度预测模型[J]. 复合材料学报, 2021, 38(10):3432-3442.LI Jintao, WANG Bo, YANG Yang, et al. A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage[J]. Acta Materiae Compositae Sinica,2021,38(10):3432-3442(in Chinese). [7] DICARLO J A. Advances in SiC/SiC composites for aero-propulsion[J]. John Wiley & Sons, Inc,2015:217-235. [8] BHATT R T . Creep and cyclic fatigue durability of 3D woven SiC/SiC composites with (CVI+PIP) hybrid matrix[R]. NASA, 2017. [9] NASLAIN R R. The design of the fibre-matrix interfacial zone in ceramic matrix composites[J]. Composites Part A:Applied Science and Manufacturing,1998,29(9):1145-1155. [10] GALLET S L, REBILLAT F, GUETTE A, et al. Influence of a multilayered matrix on the lifetime of SiC/BN/SiC minicomposites[J]. Journal of Materials Science,2004,39(6):2089-2097. doi: 10.1023/B:JMSC.0000017771.93067.42 [11] BHATT R T, CHOI S R, COSGRIFF L M, et al. Impact resistance of environmental barrier coated SiC/SiC composites[J]. Materials Science and Engineering A,2008,476(1):8-19. [12] SULLIVAN R M. Time-dependent stress rupture strength of Hi-Nicalon fiber-reinforced silicon carbide composites at intermediate temperatures[J]. Journal of the European Ceramic Society,2016,36(8):1885-1892. doi: 10.1016/j.jeurceramsoc.2016.02.043 [13] BREWER D. HSR/EPM combustor materials development program[J]. Materials Science and Engineering A,1999,261(1):284-291. [14] UDAYAKUMAR A, RAOLE P M, BALASUBRAMANIAN M. Synthesis of tailored 2D SiCf/SiC ceramic matrix composites with BN/C interphase through ICVI[J]. Journal of Nuclear Materials,2011,417(1):363-366. [15] 王西, 王克杰, 柏辉, 等. 化学气相渗透2D-SiCf/SiC复合材料的蠕变性能及损伤机理[J]. 无机材料学报, 2020, 35(07):817-821.WANG Xi, WANG Kejie, BAI Hui, et al. Creep properties and damage mechanism of 2D-SiCf/SiC composites prepared by CVI[J]. Journal of Inorganic Materials,2020,35(07):817-821(in Chinese). [16] MORSCHER G N, GYEKENYESI J Z, BHATT R T. Damage accumulation in 2D woven SiC/SiC ceramic matrix composites// Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components[J]. Ohio Aerospace Institute, NASA Glenn Research Center, MS 106-5, Cleveland, OH,4413,5:2000. [17] RUGGLES-WRENN M B, JONES T P. Tension-compression fatigue of a SiC/SiC ceramic matrix composite at elevated temperature[J]. Journal of Engineering for Gas Turbines & Power,2012,134(9):467-473. [18] MORSCHER G N, OJARD G, MILLER R, et al. Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: Retained 1properties, damage development, and failure mechanisms[J]. Composites Science and Technology,2008,68(15):3305-3313. [19] DUGNE O, PROUHET S, GUETTE A, et al. Interface characterization by TEM, AES and SIMS in tough SiC (ex-PCS) fibre-SiC (CVI) matrix composites with a BN interphase[J]. Journal of Materials Science,1993,28(13):3409-3422. doi: 10.1007/BF01159815 [20] HEREDIA F E, MCNULTY J C, ZOK F W, et al. Oxidation embrittlement probe for ceramic-matrix composites[J]. Journal of the American Ceramic Society,1995,78(8):2097-2100. doi: 10.1111/j.1151-2916.1995.tb08621.x [21] MORSCHER G N. Tensile stress rupture of SiCf/SiCm minicomposites with carbon and boron nitride interphases at elevated temperatures in air[J]. Journal of the American Ceramic Society,1997,80(8):2029-2042. [22] ZHOU J, CHENG L F, YE F, et al. Effects of heat treatment on mechanical and dielectric properties of 3D Si3N4f/BN/Si3N4 composites by CVI[J]. Journal of the European Ceramic Society,2020,40(15):5305-5315. doi: 10.1016/j.jeurceramsoc.2020.06.018 [23] JACOBSON N S, MORSCHER G N, BRYANT D R, et al. High-temperature oxidation of boron nitride: II, boron nitride layers in composites[J]. Journal of the American Ceramic Society,1999,82(6):1473-1482. [24] JACOBSON N S, MYERS D L. Active Oxidation of SiC[J]. Oxidation of Metals,2011,75(1):1-25. [25] LAROCHELLE K J, MORSCHER G N. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature — Part I[J]. Applied Composite Materials,2006,13(3):147-172. doi: 10.1007/s10443-006-9009-8 [26] MORSCHER G N, HURST J, BREWER D. Intermediate temperature stress rupture of a woven Hi-Nicalon, BN interphase, SiC matrix composite in air[J]. Journal of the American Ceramic Society,2000,83(6):1441-1449. doi: 10.1111/j.1151-2916.2000.tb01408.x [27] XU W B, ZOK F W, MCMEEKING R M, et al. Model of oxidation-induced fiber fracture in SiC/SiC composites[J]. Journal of the American Ceramic Society,2014,97(11):3676-3683. doi: 10.1111/jace.13180 [28] LIU Z L, YUE J L, FU Z Y, et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500°C in air[J]. Journal of the European Ceramic Society,2020,40(8):2821-2827. doi: 10.1016/j.jeurceramsoc.2019.04.013 [29] HUI M, CHENG L. Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms[J]. Carbon,2009,47(4):1034-1042. doi: 10.1016/j.carbon.2008.12.025 [30] ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review[J]. Composites Science and Technology,1999,59(6):833-851. doi: 10.1016/S0266-3538(99)00014-7 -

计量
- 文章访问数: 220
- HTML全文浏览量: 84
- 被引次数: 0