留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度纤维增强纳米孔树脂基复合材料的断裂机制

张鸿宇 钱震 蔡宏祥 牛波 张亚运 龙东辉

张鸿宇, 钱震, 蔡宏祥, 等. 低密度纤维增强纳米孔树脂基复合材料的断裂机制[J]. 复合材料学报, 2023, 40(3): 1764-1772. doi: 10.13801/j.cnki.fhclxb.20220518.002
引用本文: 张鸿宇, 钱震, 蔡宏祥, 等. 低密度纤维增强纳米孔树脂基复合材料的断裂机制[J]. 复合材料学报, 2023, 40(3): 1764-1772. doi: 10.13801/j.cnki.fhclxb.20220518.002
ZHANG Hongyu, QIAN Zhen, CAI Hongxiang, et al. Fracture mechanism of low-density fiber reinforced nanoporous resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1764-1772. doi: 10.13801/j.cnki.fhclxb.20220518.002
Citation: ZHANG Hongyu, QIAN Zhen, CAI Hongxiang, et al. Fracture mechanism of low-density fiber reinforced nanoporous resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1764-1772. doi: 10.13801/j.cnki.fhclxb.20220518.002

低密度纤维增强纳米孔树脂基复合材料的断裂机制

doi: 10.13801/j.cnki.fhclxb.20220518.002
基金项目: 国家自然科学基金(22078100;52102098)
详细信息
    通讯作者:

    龙东辉,博士,教授,博士生导师,研究方向为热防护材料与技术 E-mail:longdh@mail.ecust.edu.cn

  • 中图分类号: TB332

Fracture mechanism of low-density fiber reinforced nanoporous resin composites

Funds: National Natural Science Foundation of China (22078100; 52102098)
  • 摘要: 纤维增强纳米孔树脂基复合材料(IPC)是一类轻质高效防隔热一体化耐烧蚀材料,具有典型的非均质结构特征。在外加载荷下,内部的纳米孔隙将会衍生出微裂纹。裂纹的萌生、聚合和扩展对复合材料的强度、刚度、变形性等力学性能有着重要的影响。本文分别以石英纤维针刺网胎(NQF)、石英纤维针刺网胎/纤维布(NQCF)为增强体,制备得到不同纤维结构增强的纳米孔酚醛树脂(NPR)基复合材料(NQF/NPR、NQCF/NPR),对比研究了材料拉伸强度、拉伸模量、断裂伸长率及拉伸疲劳性能,并采用CT原位拉伸装置表征了拉伸过程中复合材料的微观结构演变。结果表明:纤维布的引入极大提高了复合材料的力学性能,并且微裂纹首先在针刺区域边缘的树脂基体中出现。在裂纹扩展过程中,纤维结构对树脂基体的损伤起到了不同程度的阻碍作用。最后结合有限元法建立了NPR及纤维布的有限元模型,分析了不同尺度下材料的断裂机制。

     

  • 图  1  石英纤维针刺网胎(NQF) (a) 和石英纤维针刺网胎/纤维布(NQCF) (b) 结构示意图;纳米孔酚醛树脂(NPR) SEM图像 (c) 及粒径分布 (d);NQF/NPR的照片 (e) 和铺层金相显微结构图 (f);NQCF/NPR的照片 (g) 和铺层金相显微结构图 (h)

    Figure  1.  Structural illustration of needled quartz fiber mesh (NQF) (a) and needled quartz fiber mesh/cloth (NQCF) (b); SEM image (c) and particle size distribution (d) of nano-porous phenolic (NPR) resin; Photo (e) and microstructure image of laying-metallographic (f) of NQF/NPR; Photo (g) and microstructure image of laying-metallographic (h) of NQCF/NPR

    图  2  NQF/NPR、NQCF/NPR的拉伸应力-应变曲线 (a);NQF/NPR (b) 和NQCF/NPR (c) 的断口形貌;NQF/NPR中基体 (d) 与界面处 (e) 的破坏形貌

    Figure  2.  Tensile stress-strain curves of NQF/NPR and NQCF/NPR (a); Fracture morphologies of NQF/NPR (b) and NQCF/NPR (c); Damage morphology of phenolic resin (d) and interface (e) in NQF/NPR

    图  3  (a) 拉伸循环应力的施加形式;NQF/NPR (b) 和NQCF/NPR (c) 的破坏形貌

    Figure  3.  (a) Application form of tensile cyclic stress; Damage morphologies of NQF/NPR (b) and NQCF/NPR (c)

    R—Stress ratio

    图  4  NPR的拉伸应力云图 (a)、损伤变量云图 (b) 和损伤过程 (c)

    Figure  4.  Tensile principal stress (a), damage variable (b) and damage process (c) of NRP

    Avg—Average

    图  5  不同拉伸阶段NQF/NPR二维切片:(a) 初始位点;(b) 弹性阶段;(c) 塑性阶段;(d) 断裂阶段

    Figure  5.  Two-dimensional slices of the NQF/NPR from X-ray CT scanning at different tensile stages: (a) Unloaded point; (b) Elastic stage; (c) Plasticity stage; (d) Fractured stage

    图  6  NQCF/NPR的拉伸应力云图 (a)、断裂机制 (b)

    Figure  6.  Tensile principal stress (a), fracture mechanism (b) of NQCF/NPR

    表  1  NQF/NPR、NQCF/NPR的力学性能

    Table  1.   Mechanical properties of NQF/NPR and NQCF/NPR

    CompositeDensity/(g·cm−3)Tensile strength/MPaTensile modulus/MPaElongation/%
    NQF/NPR0.4512.1±1.11400±2001.5±0.1
    NQCF/NPR0.5621.3±1.02980±2003.5±0.1
    下载: 导出CSV

    表  2  NQF/NPR与NQCF/NPR的疲劳性能

    Table  2.   Fatigue performance of NQF/NPR and NQCF/NPR

    CompositeInitial strength/
    MPa
    Strength of 55%
    stress level/MPa
    NQF/NPR18.4 8.1
    NQCF/NPR24.121.2
    下载: 导出CSV
  • [1] ZOBY E, THOMPSON R, WURSTER K. Aeroheating design issues for reusable launch vehicles-A perspective[C]//34th AIAA Fluid Dynamics Conference and Exhibit. Portland, 2004: 2535.
    [2] KARIMI M S, OBODIB M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows[J]. Heat and Mass Transfer,2019,55(2):547-569. doi: 10.1007/s00231-018-2416-1
    [3] 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11):139-153.

    GUI Yewei. Comprehensive thermal effects of hypersonic vehicles[J]. Scientia Sinica Physica, Mechanica & Astronomica,2019,49(11):139-153(in Chinese).
    [4] 袁海根, 曾金芳, 杨杰, 等. 防热抗烧蚀复合材料研究进展[J]. 化学推进剂与高分子材料, 2006, 4(1):21-25. doi: 10.3969/j.issn.1672-2191.2006.01.005

    YUAN Haigen, ZENG Jinfang, YANG Jie, et al. Research progress of high temperature thermoprotective and ablation resistant composite materials[J]. Chemical Propellants & Polymeric Materials,2006,4(1):21-25(in Chinese). doi: 10.3969/j.issn.1672-2191.2006.01.005
    [5] LAUB B, CHEN Y K, DEC J. Development of a high-fidelity thermal/ablation response model for sla-561 v[C]. 41st AIAA Thermophysics Conference. San Antonio, 2009: 4232.
    [6] 王瑞杰, 郭建业, 宋寒, 等. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(S01): 548-551.

    WANG Ruijie, GUO Jianye, SONG Han, et al. Design and properties of phenolic aerogel multifunctional composites[J]. Materials Reports, 201, 35(S01): 548-551.
    [7] 张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8):3663-3673.

    ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanism of low-density needled fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3663-3673(in Chinese).
    [8] 钱震, 张鸿宇, 张琪凯, 等. 高强度-中密度纳米孔树脂基防隔热复合材料的制备与性能[J]. 复合材料学报, 2023, 40(1):83-95.

    QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength-medium density nanoporous resin-based ablation/insulation integrated composites[J]. Acta Materiae Compositae Sinica,2023,40(1):83-95(in Chinese).
    [9] 董金鑫, 朱召贤, 姚鸿俊, 等. 酚醛气凝胶/碳纤维复合材料的结构调控及性能研究[J]. 化工学报, 2018, 69(11):4896-4901.

    DONG Jinxin, ZHU Zhaoxian, YAO Hongjun, et al. Structural control and properties of phenolic aerogel/carbon fiber composites[J]. CIESC Journal,2018,69(11):4896-4901(in Chinese).
    [10] 贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备, 结构及性能[J]. 宇航材料工艺, 2016, 46(1):77-80. doi: 10.3969/j.issn.1007-2330.2016.01.013

    JIA Xianfeng, LIU Xiaohua, QIAO Wenming, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials and Technology,2016,46(1):77-80(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.01.013
    [11] 贾献峰, 王际童, 龙东辉, 等. PICA-X 的制备及其炭化前后性能研究[J]. 宇航材料工艺, 2016, 46(6):46-49.

    JIA Xianfeng, WANG Jitong, LONG Donghui, et al. Preparation and properties of PICA-X before and after carbonization[J]. Aerospace Materials and Technology,2016,46(6):46-49(in Chinese).
    [12] 杜善义. 高超声速飞行器的热防护材料及结构问题[C]. 中国力学学会学术大会. 杭州, 2009.

    DU Shanyi. Thermal protection materials and structure of hypersonic Vehicle[C]. Academic Conference of Chinese Society of Mechanics. Hangzhou, 2009(in Chinese).
    [13] 朱召贤, 董金鑫, 贾献峰, 等. 酚醛气凝胶/炭纤维复合材料的结构与烧蚀性能[J]. 新型炭材料, 2018, 33(4):370-376.

    ZHU Zhaoxian, DONG Jinxin, JIA Xianfeng, et al. The microstructure and ablation behavior of carbon fiber/henolic aerogel composites[J]. New Carbon Materials,2018,33(4):370-376(in Chinese).
    [14] 杜修力, 金浏. 混凝土材料宏观力学特性分析的细观单元等效化模型[J]. 计算力学学报, 2012, 29(5):654-661.

    DU Xiuli, JIN Liu. Meso-element equivalent model for macro-scopic mechanical properties analysis of concrete materials[J]. Chinese Journal of Computational Mechanics,2012,29(5):654-661(in Chinese).
    [15] 郑晓霞, 郑锡涛, 缑林虎. 多尺度方法在复合材料力学分析中的研究进展[J]. 力学进展, 2010, 40(1):41-56.

    ZHENG Xiaoxia, ZHENG Xitao, GOU Linhu. The research progress on multiscale method for the mechanical analysis of composites[J]. Advances in Mechanics,2010,40(1):41-56(in Chinese).
    [16] LI D S, WISNOM M R. Finite element micromechanical modelling of unidirectional fibre-reinforced metal-matrix composites[J]. Composites Science and Technology,1994,51(4):545-563. doi: 10.1016/0266-3538(94)90088-4
    [17] 赵秀阳. 复合材料三维重构及力学性能的有限元数值分析[D]. 济南: 山东大学, 2006.

    ZHAO Xiuyang. Three-dimensional reconstruction and finite element numerical analysis of mechanical properties of composites[D]. Jinan: Shandong University, 2006(in Chinese).
    [18] JIA W, FANG L, CHEN Z, et al. A multiscale analysis method for predicting the transverse mechanical properties of unidirectional fibre-reinforced composites[J]. Fibers and Polymers,2020,21(6):1331-1346. doi: 10.1007/s12221-020-9682-5
    [19] 惠新育, 许英杰, 张卫红, 等. 平纹编织SiC/SiC复合材料多尺度建模及强度预测[J]. 复合材料学报, 2019, 36(10):2380-2388.

    HUI Xinyu, XU Yingjie, ZHANG Weihong, et al. Multi-scale modeling and strength prediction of plain woven SiC/SiC composites[J]. Acta Materiae Compositae Sinica,2019,36(10):2380-2388(in Chinese).
    [20] HE C, GE J, ZHANG B, et al. A hierarchical multiscale model for the elastic-plastic damage behavior of 3D braided composites at high temperature[J]. Composites Science and Technology,2020,196:108230. doi: 10.1016/j.compscitech.2020.108230
    [21] ZHANG J, AN P. Modeling quasi-3D needle-punched C/C composites using a linear simplification representative volume element model[J]. AIP Advances,2019,9(3):035344. doi: 10.1063/1.5068727
    [22] 谭勇洋, 燕瑛, 李欣, 等. 针刺C/C复合材料拉伸强度及渐进失效数值预测[J]. 航空学报, 2016, 37(12):3734-3741.

    TAN Yongyang, YAN Ying, LI Xin, et al. Numerical prediction of tensile strength and progressive damage of needled C/C composites[J]. Acta Aeronautica et Astronautica Sinica,2016,37(12):3734-3741(in Chinese).
    [23] 曹鹏军, 赵文斌, 杨斌, 等. 基于 Micro-CT图像的缎纹织物细观结构分析及渗透率预测[J]. 复合材料学报, 2023, 40(3):1767-1779.

    CAO Pengjun, ZHAO Wenbin, YANG Bin, et al. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica,2023,40(3):1767-1779(in Chinese).
    [24] 邵梦洁, 谢军波, 杨志, 等. 基于Micro-CT技术的3D机织预制件细观结构分析[J]. 复合材料学报, 2021, 39(8):4129-4138.

    SHAO Mengjie, XIE Junbo, YANG Zhi, et al. Meso-structure analysis and permeability prediction of satin fabric based on Micro-CT[J]. Acta Materiae Compositae Sinica,2021,39(8):4129-4138(in Chinese).
    [25] GE L, LI H, ZHONG J, et al. Micro-CT based trans-scale damage analysis of 3D braided composites with pore defects[J]. Composites Science and Technology,2021,211:108830. doi: 10.1016/j.compscitech.2021.108830
    [26] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites-Determination of tensile properties: GB/T 1447—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [27] 中国国家标准化管理委员会. 纤维增强塑料层合板拉-拉疲劳性能试验方法: GB/T 16779—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of People’s Republic of China. Test method for tensile-tensile fatigue properties of fiber-reinforced plastic laminates: GB/T 16779—2008[S]. Beijing: China Standard Press of China, 2008(in Chinese).
    [28] 邱爽, 周金宇. 不同应力水平对碳纤维复合材料疲劳剩余刚度的影响[J]. 航空材料学报, 2018, 38(2):110-117.

    QIU Shuang, ZHOU Jinyu. Effect of different stress levels on fatigue residual stiffness of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2018,38(2):110-117(in Chinese).
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  354
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-05-05
  • 录用日期:  2022-05-13
  • 网络出版日期:  2022-05-20
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回