留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性

徐佳佳 方海 韩娟 祝露 王健

徐佳佳, 方海, 韩娟, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性[J]. 复合材料学报, 2022, 39(8): 3965-3981. doi: 10.13801/j.cnki.fhclxb.20211117.002
引用本文: 徐佳佳, 方海, 韩娟, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性[J]. 复合材料学报, 2022, 39(8): 3965-3981. doi: 10.13801/j.cnki.fhclxb.20211117.002
XU Jiajia, FANG Hai, HAN Juan, et al. Energy absorption behavior of foam-filled sandwich composite materials reinforced by lattice webs under quasi-static compression[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3965-3981. doi: 10.13801/j.cnki.fhclxb.20211117.002
Citation: XU Jiajia, FANG Hai, HAN Juan, et al. Energy absorption behavior of foam-filled sandwich composite materials reinforced by lattice webs under quasi-static compression[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3965-3981. doi: 10.13801/j.cnki.fhclxb.20211117.002

格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性

doi: 10.13801/j.cnki.fhclxb.20211117.002
基金项目: 国家自然科学基金(52078248);江苏省杰出青年基金(BK20190034);湖南省交通运输厅科技项目(201916)
详细信息
    通讯作者:

    方海,博士,教授,博士生导师,研究方向为复合材料结构  E-mail: fanghainjut@njtech.edu.cn

  • 中图分类号: TB332;TB301

Energy absorption behavior of foam-filled sandwich composite materials reinforced by lattice webs under quasi-static compression

  • 摘要: 复合材料夹芯结构具有较高的比强度和比刚度、优异的耐腐蚀性能、良好的抗疲劳性能、简单的成型工艺等特点。以聚氨酯(Polyurethane,PU)泡沫作为芯材,玻璃纤维增强树脂复合材料(Glass fiber reinforced polymer,GFRP)作为面层和腹板,制备了空间格构腹板增强泡沫夹芯复合材料试件。保持试件的几何尺寸不变,改变竖直格构腹板的空间位置,将竖直格构腹板优化设计为双层正交格构腹板、双层错位格构腹板和三层错位格构腹板。对试件开展准静态压缩试验,对比研究其破坏形式与吸能特性。发现三层错位格构腹板试件具有较理想的荷载-位移曲线。改变格构腹板的空间位置后,试件的弹性行程延长,同时,试件的承载能力也有所提升。与竖直格构腹板相比,三层错位格构腹板试件的能量吸收值提升91.9%。运用等效十字模型计算了双层正交格构腹板试件的面内等效弹性压缩刚度,可知双层正交格构腹板试件的弹性刚度受格构压缩模量影响较大。利用ANSYS/LS-DYNA对试件进行数值模拟,对比试验研究得到的材料特性和破坏模式,验证了数值模拟的准确性,进而运用数值模拟对各试件的GFRP腹板和泡沫芯材吸收能量的情况进行对比和分析。

     

  • 图  1  空间格构和竖直格构腹板增强泡沫夹芯复合材料试件荷载-位移曲线对比

    Figure  1.  Comparison of load-displacement curves between the specimens with foam-filled sandwich composite materials reinforced by vertical lattice webs and spatial lattice webs

    Pu—Peak load; Pb—Yield load; y—Yield displacement; st—Stroke length; A—Elastic abrupt point; B—Front-yield point; C—Post-yield point; D—Reinforcement point

    图  2  空间格构腹板增强泡沫夹芯复合材料

    Figure  2.  Foam-filled sandwich composite materials reinforced by spatial lattice webs

    图  3  PU泡沫应力-应变关系曲线

    Figure  3.  Stress-strain curves of PU foam

    图  4  竖直格构腹板增强泡沫夹芯复合材料试件准静态压缩试验

    Figure  4.  Quasi-static compression experiment of foam-filled sandwich composite materials reinforced by vertical lattice webs

    图  7  三层错位格构腹板增强泡沫夹芯复合材料试件准静态压缩试验

    Figure  7.  Quasi-static compression experiment of foam-filled sandwich composite materials reinforced by triple-layered dislocation lattice webs

    图  5  双层正交格构腹板增强泡沫夹芯复合材料试件准静态压缩试验

    Figure  5.  Quasi-static compression experiment of foam-filled sandwich composite materials reinforced by double-layered orthogonal lattice webs

    图  6  双层错位格构腹板增强泡沫夹芯复合材料试件准静态压缩试验

    Figure  6.  Quasi-static compression experiment of foam-filled sandwich composite materials reinforced by double-layered dislocation lattice webs

    图  8  空间格构腹板增强泡沫夹芯复合材料试件荷载-位移曲线

    Figure  8.  Load-displacement curves of the specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs

    图  9  双层正交格构腹板增强泡沫夹芯复合材料试件荷载-位移曲线

    Figure  9.  Load-displacement curves of the specimens with foam-filled sandwich composite materials reinforced by double-layered orthogonal lattice webs

    图  10  双层错位格构腹板增强泡沫夹芯复合材料试件荷载-位移曲线

    Figure  10.  Load-displacement curves of the specimens with foam-filled sandwich composite materials reinforced by double-layered dislocation lattice webs

    图  11  三层错位格构腹板增强泡沫夹芯复合材料试件荷载-位移曲线

    Figure  11.  Load-displacement curves of the specimens with foam-filled sandwich composite materials reinforced by triple-layered dislocation lattice webs

    图  12  空间格构腹板增强泡沫夹芯复合材料试件能量吸收

    Figure  12.  Energy absorption of the specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs

    图  13  双层正交格构腹板增强泡沫夹芯复合材料试件能量吸收

    Figure  13.  Energy absorption of the specimens with foam-filled sandwich composite materials reinforced by double-layered orthogonal lattice webs

    图  14  双层错位格构腹板增强泡沫夹芯复合材料试件能量吸收

    Figure  14.  Energy absorption of the specimens with foam-filled sandwich composite materials reinforced by double-layered dislocation lattice webs

    图  15  三层错位格构腹板增强泡沫夹芯复合材料试件能量吸收

    Figure  15.  Energy absorption of the specimens with foam-filled sandwich composite materials reinforced by triple-layered dislocation lattice webs

    图  16  双层正交格构腹板增强泡沫夹芯复合材料试件十字等效模型

    Figure  16.  Equivalent cross model of the specimens with foam-filled sandwich composite materials reinforced by double-layered orthogonal lattice webs

    t—Thickness of the lattice webs; a—Length of the horizontally lattice webs; b—Length of the vertical lattice webs; Fb—Force along the vertical lattice webs; Fp—Force along the vertical foam core; σ—Pressure stress on foam core; m-m—m-m section

    图  17  竖直格构腹板增强泡沫夹芯复合材料试件变形与应力云图

    Figure  17.  Strain and stress of the specimens with foam-filled sandwich composite materials reinforced by vertical lattice webs

    图  18  双层正交格构腹板增强泡沫夹芯复合材料试件变形与应力云图

    Figure  18.  Strain and stress of the specimens with foam-filled sandwich composite materials reinforced by double-layered orthogonal lattice webs

    图  19  双层错位格构腹板增强泡沫夹芯复合材料试件变形与应力云图

    Figure  19.  Strain and stress of the specimens with foam-filled sandwich composite materials reinforced by double-layered dislocation lattice webs

    图  20  三层错位格构腹板增强泡沫夹芯复合材料试件变形与应力云图

    Figure  20.  Strain and stress of the specimens with foam-filled sandwich composite materials reinforced by triple-layered dislocation lattice webs

    图  21  空间格构腹板增强泡沫夹芯复合材料试件荷载位移曲线对比

    Figure  21.  Comparison between load-displacement curves of the specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs

    表  1  格构腹板增强泡沫夹芯复合材料试件的尺寸参数

    Table  1.   Dimension parameters of foam-filled sandwich composite materials reinforced by lattice webs specimens

    SpecimenLength/mmWidth/mmHeight/mmFace-sheet thickness/mmLattice-web thickness/mm
    V
    3003001502.42.4
    DO
    3003001502.42.4
    DD
    3003001502.42.4
    TD
    3003001502.42.4
    Notes: V—Vertical lattice webs; DO—Double-layered orthogonal lattice webs; DD—Double-layered dislocation lattice webs; TD—Triple-layered dislocation lattice webs.
    下载: 导出CSV

    表  2  玻璃纤维增强树脂复合材料(GFRP)片材拉伸试验结果

    Table  2.   Results of tensile experiment on glass fiber reinforced polymer (GFRP) sheet

    SpecimenTensile strength ftElastic modulus E
    Experiment/MPaAverage/MPaCoefficient/%Experiment/GPaAverage/GPaCoefficient/%
    1196.7208.15.4812.412.93.88
    2200.33.7512.80.78
    3217.54.5212.53.10
    4213.42.5513.22.33
    5212.62.1613.65.43
    下载: 导出CSV

    表  3  聚氨酯(PU)泡沫压缩试验结果

    Table  3.   Results of compression experiment on polyurethane (PU) foam

    SpecimenCompressive strength fcElastic modulus E
    Experiment/MPaAverage/MPaCoefficient/%Experiment/GPaAverage/GPaCoefficient/%
    10.1010.13927.341.762.2722.47
    20.1411.442.241.32
    30.1306.472.0211.01
    40.16317.272.6315.86
    50.16115.832.7119.38
    下载: 导出CSV

    表  4  不同格构腹板增强泡沫夹芯复合材料试件试验结果

    Table  4.   Results of the specimens with foam-filled sandwich composite materials reinforced by different lattice webs

    SpecimenPu
    /kN
    1
    /mm
    K/(kN·mm−1)$ {\bar{{P}}}_{\text{u}} $/kN$ {\bar{\varDelta }}_{\text{1}} $/mm$ {\bar{K }} $/(kN·mm−1)
    V-1 116.1 5.4 21.5 114.2 5.2 22.0
    V-2 112.3 5.0 22.5
    DO-1 106.1 4.2 25.3 110.6 4.7 23.9
    DO-2 115.0 5.1 22.5
    DD-1 50.1 8.7 5.8 54.5 9.8 5.6
    DD-2 58.9 10.9 5.4
    TD-1 36.7 12.8 2.9 37.4 12.7 3.0
    TD-2 38.0 12.5 3.0
    Notes: Pu—Elastic ultimate bearing capacity; 1—Elastic stroke; K—Average initial stiffness; $ {\bar{{P}}}_{\text{u}} $—Average elastic ultimate bearing capacity; $ {\bar{\varDelta }}_{\text{1}} $—Average elastic stroke; $ {\bar{K }} $—Average initial stiffness.
    下载: 导出CSV

    表  5  空间格构腹板增强泡沫夹芯复合材料试件能量吸收值(J)

    Table  5.   Energy absorption of the specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs (J)

    SpecimenLoad level
    0.10.20.30.40.50.60.7
    V-1710107314441927229526233060
    V-261689112411711205723952760
    DO-1914149019362343281334914349
    DO-2959150419312349293238114683
    DD-1552125318512540323239044778
    DD-2653130018792466290133974170
    TD-1365101917332499330044265873
    TD-2391106017912602346747956325
    下载: 导出CSV

    表  6  空间格构腹板增强泡沫夹芯复合材料试件比吸能值

    Table  6.   Specific energy absorption of the specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs

    SpecimenEa/Jm/kgEs/(J·kg−1)$ {\bar{{E}}}_{\text{s}}/ $(J·kg−1)
    V-130602.351302.11226.1
    V-227602.401150.0
    DO-143492.851526.01584.6
    DO-246832.851643.2
    DD-147782.901647.61555.4
    DD-241702.851463.2
    TD-158723.601631.11694.0
    TD-263253.601756.9
    Notes: Ea—Total energy absorption; m—Mass of specimens; Es—Specific energy absorption; $ {\bar{{E}}}_{\text{s}} $—Average specific energy absorption.
    下载: 导出CSV

    表  7  空间格构腹板增强泡沫夹芯复合材料试件平均压溃力

    Table  7.   Mean crushing load of the specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs

    SpecimenEa/Js/mmFm/kN$ {\bar{{F}}}_{\text{m}} $/kN
    V-1306010529.127.7
    V-2276010526.3
    DO-1434910541.443.0
    DO-2468310544.6
    DD-1477810545.542.6
    DD-2417010539.7
    TD-1587210555.958.1
    TD-2632510560.2
    Notes: s—Total compression; Fm—Mean crushing load; $ {\bar{{F}}}_{\text{m}} $—Average mean crushing load.
    下载: 导出CSV

    表  8  GFRP模型材料参数

    Table  8.   Material parameters of the GFRP model

    ρ/(g·cm−3)Efx/GPaEfy/GPaEfz/GPa
    1.812.912.94.30
    Gxy/GPaGxz/GPaGyz/GPaνxy
    2.51.251.250.15
    νxzνyzSc/MPaXt/MPa
    0.10.155.0322.9
    Yt/MPaYc/MPaα
    322.9168.20.3
    Notes: ρ—Density of specimen; Ef—Young’s modulus; G—Shear modulus; ν—Poission’s ratio; Sc—Shear strength; Xt—Longitudinal tensile strength; Yt—Transverse tensile strength; Yc—Transverse compressive strength; α—Nonlinear shear coefficient (Subscripts x, y, z indicate the directions of the axes).
    下载: 导出CSV

    表  9  PU泡沫和刚体模型材料参数

    Table  9.   Material parameters of the PU foam and the rigid model

    ρ/(g·cm−3)E/MPaν
    PU foam0.042.480.3
    Rigid model7.82.0×1050.27
    下载: 导出CSV

    表  10  空间格构腹板增强泡沫夹芯复合材料试件力学性能试验值与有限元值对比

    Table  10.   Comparison between experimental and numerical values of mechanical properties of the specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs

    SpecimenPu/kNΔ1/mmK/(kN·mm−1)
    Exp.Num.Deviation/%Exp.Num.Deviation/%Exp.Num.Deviation/%
    V114.290.4−20.85.23.6−30.722.025.114.1
    DO110.698.5−10.94.73.8−19.123.925.98.4
    DD54.546.2−15.29.86.7−31.65.66.923.2
    TD37.445.621.912.717.638.63.02.6−13.3
    下载: 导出CSV

    表  11  空间格构腹板增强泡沫夹芯复合材料试件能量吸收试验值与有限元值对比(J)

    Table  11.   Comparison between experimental and numerical values of energy absorption of the specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs (J)

    SpecimenLoad level
    0.10.30.5
    Exp.Num.Deviation/%Exp.Num.Deviation/%Exp.Num.Deviation/%
    V736.6594.9−19.21474.71416.6−3.92314.22206.1−4.7
    DO958.4677.4−29.31961.11610.8−17.92851.32506.5−12.1
    DD601.2467.0−22.31891.21487.6−21.32531.93272.029.2
    TD404.2504.724.91777.81807.21.73364.22939.4−12.6
    下载: 导出CSV

    表  12  空间格构腹板增强泡沫夹芯复合材料试件GFRP腹板和PU泡沫的吸能对比(MJ)

    Table  12.   Comparison of energy absorption between the GFRP webs and the PU foam of specimens with foam-filled sandwich composite materials reinforced by spatial lattice webs (MJ)

    PartVDODDTD
    GFRP webs0.130.170.190.23
    PU foam0.920.770.730.63
    下载: 导出CSV
  • [1] 孙春方, 薛元德, 胡培. 复合材料泡沫夹层结构力学性能与试验方法[J]. 玻璃钢/复合材料, 2005(2):3-6.

    SUN C F, XUE Y D, HU P. Mechanical properties and test method for foam core sandwich structure[J]. Fiber Reinforced Plastics/Composites,2005(2):3-6(in Chinese).
    [2] 余同希, 卢国兴. 材料与结构的能量吸收[M]. 北京: 化学工业出版社, 2006: 253-261.

    YU T X, LU G X. Energy absorption of structures and materials[M]. Beijing: Chemical Industry Press, 2006: 253-261(in Chinese).
    [3] ZI G, KIM B M, HWANG Y K, et al. An experimental study on static behavior of a GFRP bridge deck filled with a polyurethane foam[J]. Composite Structures,2008,82(2):257-268. doi: 10.1016/j.compstruct.2007.01.010
    [4] YOO S H, CHANG S H, SUTCLIFFE M P F. Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures[J]. Composites Part A: Applied Science and Manufacturing,2010,41(3):427-434. doi: 10.1016/j.compositesa.2009.11.010
    [5] AZARAKHSH S, GHAMARIAN A. Collapse behavior of thin-walled conical tube clamped at both ends subjected to axial and oblique loads[J]. Thin-Walled Structures,2017,112:1-11. doi: 10.1016/j.tws.2016.11.020
    [6] GUSTIN J, JONESON A, MAHINFALAH M, et al. Low velocity impact of combination Kevlar/carbon fiber sandwich composites[J]. Composite Structures,2005,69(4):396-406. doi: 10.1016/j.compstruct.2004.07.020
    [7] SOUTIS C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences,2005,41(2):143-151. doi: 10.1016/j.paerosci.2005.02.004
    [8] XIONG J, DU Y T, MOUSANEZHAD D, et al. Sandwich structures with prismatic and foam cores: A review[J]. Advanced Engineering Materials,2019,21(1):1800036.
    [9] 王凯, 熊晨曦, 贺强. 超轻复合材料机翼结构设计及成型技术研究[J]. 玻璃钢/复合材料, 2020(4):72-78.

    WANG K, XIONG C X, HE Q. Research on the technology of structure design and forming of ultra-light composite wing[J]. Fiber Reinforced Plastics/Composites,2020(4):72-78(in Chinese).
    [10] WU Z M, LIU W Q, WANG L, et al. Theoretical and experimental study of foam-filled lattice composite panels under quasi-static compression loading[J]. Composites Part B: Engineering,2014,60(60):329-340.
    [11] WANG L, LIU W Q, WAN L, et al. Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering,2014,67:270-279. doi: 10.1016/j.compositesb.2014.07.003
    [12] FANG H, XU X, LIU W Q, et al. Flexural behavior of compo-site concrete slabs reinforced by FRP grid facesheets[J]. Composites Part B: Engineering,2016,92:46-62. doi: 10.1016/j.compositesb.2016.02.029
    [13] LIU W Q, ZHANG F B, WANG L, et al. Flexural perfor-mance of sandwich beams with lattice ribs and a functionally multilayered foam core[J]. Composite Structures,2016,152:704-711.
    [14] YANG C, LI X L, FANG H, et al. An experimental investigation of static and fatigue behaviour of GFRP sandwich beams with a web reinforced wood core[J]. Construction and Building Materials,2020,253:119194.
    [15] 祝典, 方海, 史慧媛, 等. 格构式腹板增强桐木夹芯复合梁弯曲疲劳性能试验研究[J]. 建筑结构学报, 2018, 39(S2):215-220.

    ZHU D, FANG H, SHI H Y, et al. Experimental study on bending fatigue behavior of wood core sandwich lattice-web composites beams[J]. Journal of Building Structures,2018,39(S2):215-220(in Chinese).
    [16] 杨方宇, 吴琦, 何涛, 等. 格构增强泡沫夹芯复合材料单向板弯曲疲劳研究[J]. 土木工程与管理学报, 2019, 36(1):136-142. doi: 10.3969/j.issn.2095-0985.2019.01.021

    YANG F Y, WU Q, HE T, et al. Study on bending fatigue behavior of sandwich composite panels with GFRP skins and a foam-web core[J]. Journal of Civil Engineering and Management,2019,36(1):136-142(in Chinese). doi: 10.3969/j.issn.2095-0985.2019.01.021
    [17] FAM A, SHARAF T. Flexural performance of sandwich panels comprising polyurethane core and GFRP skins and ribs of various configurations[J]. Composite Structure,2010,92:2927-2935. doi: 10.1016/j.compstruct.2010.05.004
    [18] GIANCASPRO J W. Influence of reinforcement type on the mechanical behavior and fire response of hybrid compo-sites and sandwich structures[D]. New Brunswick: The State University of New Jersey, 2004.
    [19] LEE J, KIM Y, JUNG J, et al. Experimental characterization of a pultruded GFRP bridge deck for light-weight vehicles[J]. Composite Structures,2007,80(1):141-151. doi: 10.1016/j.compstruct.2006.04.076
    [20] 樊子砚, 方海, 庄勇, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能试验[J]. 玻璃钢/复合材料, 2017(1):5-10.

    FAN Z Y, FANG H, ZHUANG Y, et al. Experimental study on energy absorption of the foam sandwich composite enhanced lattice web under quasi-static compression[J]. Fiber Reinforced Plastics/Composites,2017(1):5-10(in Chinese).
    [21] KELLER T, HAAS C, VALLEE T. Structural concept, design, and experimental verification of a glass fiber-reinforced polymer sandwich roof structure[J]. Journal of Compo-sites for Construction,2008,12(4):454-468. doi: 10.1061/(ASCE)1090-0268(2008)12:4(454)
    [22] 陈继业, 方海, 庄勇, 等. 双向格构腹板增强泡沫夹层复合材料梁弯曲性能试验[J]. 玻璃钢/复合材料, 2017(10):5-10.

    CHEN J Y, FANG H, ZHUANG Y, et al. Experimental investi-gation on flexural behavior of reinforced foam sandwich beams with two-way lattice-web[J]. Fiber Reinforced Plastics/Composites,2017(10):5-10(in Chinese).
    [23] 石昌, 王继辉, 朱俊, 等. 梯形格栅结构增强泡沫夹芯复合材料平压性能[J]. 复合材料学报, 2022, 39(2): 590-600.

    SHI C, WANG J H, ZHU J, et al. Flatwise compression pro-perties of trapezoidal lattice-web reinforced foam core sandwich composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 590-600(in Chinese).
    [24] 李静雯, 张博明, 孙义亮, 等. 不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能[J]. 复合材料学报, 2019, 36(5):1074-1082.

    LI J W, ZHANG B M, SUN Y L, et al. Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates[J]. Acta Materiae Compositae Sinica,2019,36(5):1074-1082(in Chinese).
    [25] 庄勇, 王健, 方海, 等. 空间格构腹板增强泡沫夹芯复合材料试件准静态压缩吸能试验[J]. 建筑科学与工程学报, 2018, 35(5):70-77. doi: 10.3969/j.issn.1673-2049.2018.05.010

    ZHUANG Y, WANG J, FANG H, et al. Experiment on energy absorption of foam sandwich composite specimens with spatial reinforced lattice web under quasi-static compression[J]. Journal of Architecture and Civil Engineering,2018,35(5):70-77(in Chinese). doi: 10.3969/j.issn.1673-2049.2018.05.010
    [26] 中国国家标准化管理委员会. 纤维增强塑料性能试验方法总则: GB/T 1446—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China. Fiber-reinforced plastic composite-The generals for determination of properties: GB/T 1446—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [27] 中国国家标准化管理委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2008[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China. Rigid cellular plastics-Determination of compression properties: GB/T 8813—2008[S]. Beijing: China Standards Press, 2005(in Chinese).
    [28] 中国国家标准化管理委员会. 夹层结构或芯子平压性能试验方法: GB/T 1453—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China. Test method for flatwise compression properties of sandwich constructions or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [29] 金晖. 矩形填充多孔材料夹层结构的力学性能等效模型研究[D]. 南京: 南京航空航天大学, 2009.

    JIN H. Research on equivalent models of the mechanical function for sandwich structure with rectangular filled porous materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
  • 加载中
图(21) / 表(12)
计量
  • 文章访问数:  1026
  • HTML全文浏览量:  440
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-11-09
  • 录用日期:  2021-11-11
  • 网络出版日期:  2021-11-18
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回