留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

赤泥复合充填材料浸出行为及固化机制

刘树龙 王贻明 吴爱祥 张敏哲 王志凯 吴立波

刘树龙, 王贻明, 吴爱祥, 等. 赤泥复合充填材料浸出行为及固化机制[J]. 复合材料学报, 2023, 40(12): 6729-6739. doi: 10.13801/j.cnki.fhclxb.20230315.001
引用本文: 刘树龙, 王贻明, 吴爱祥, 等. 赤泥复合充填材料浸出行为及固化机制[J]. 复合材料学报, 2023, 40(12): 6729-6739. doi: 10.13801/j.cnki.fhclxb.20230315.001
LIU Shulong, WANG Yiming, WU Aixiang, et al. Leaching behavior and solidification mechanism of red mud composite filling material[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6729-6739. doi: 10.13801/j.cnki.fhclxb.20230315.001
Citation: LIU Shulong, WANG Yiming, WU Aixiang, et al. Leaching behavior and solidification mechanism of red mud composite filling material[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6729-6739. doi: 10.13801/j.cnki.fhclxb.20230315.001

赤泥复合充填材料浸出行为及固化机制

doi: 10.13801/j.cnki.fhclxb.20230315.001
基金项目: 国家自然科学基金重点项目(52130404)
详细信息
    通讯作者:

    王贻明,博士,教授,博士生导师,研究方向为膏体充填与固废基复合材料 E-mail: ustbwym@126.com

  • 中图分类号: TD853;TB33

Leaching behavior and solidification mechanism of red mud composite filling material

Funds: Key Program of National Natural Science Foundation of China (52130404)
  • 摘要: 针对赤泥高碱性、化学成分复杂、资源化利用率低的问题,以赤泥协同粉煤灰等多固废制备矿山充填材料,对比研究赤泥复合材料配比对充填体抗压强度的发展规律,采用XRD、SEM等微观分析手段揭示充填材料水化机制,通过淋溶试验、毒性浸出试验探明充填体固碱机制、浸出行为及毒害离子固化机制。结果表明:赤泥复合材料质量比为赤泥∶粉煤灰∶水泥=3∶7∶0.4时,充填体3、7、28天抗压强度分别为0.76、1.35、1.87 MPa,材料成本为78.08元/吨,满足矿山充填开采要求。在赤泥-粉煤灰-水泥的协同互锁作用下,充填体生成了以水化硅酸钙(C-S-H)凝胶、钙矾石、钠系菱沸石为主的水化产物,且赤泥∶粉煤灰质量比越小,粉煤灰比表面积越大,充填体结构越致密,固碱效果越好。钙矾石和C-S-H凝胶通过物理固封和化学结合的形式,使赤泥复合材料毒性离子浸出浓度满足固废要求。

     

  • 图  1  赤泥(RM)和粉煤灰(FA)的XRD图谱

    Figure  1.  XRD patterns of red mud (RM) and fly ash (FA)

    图  2  原材料粒径分布

    Figure  2.  Particle size distribution of raw materials

    图  3  不同比表面积的粉煤灰SEM图像:(a) 552 m2/kg;(b) 658 m2/kg;(c) 780 m2/kg

    Figure  3.  SEM images of fly ash with different specific surface area: (a) 552 m2/kg; (b) 658 m2/kg; (c) 780 m2/kg

    图  4  试验流程图

    Figure  4.  Experimental flow chart

    CPB—Cemented paste backfill; UCS—Uniaxial compressive strength

    图  5  赤泥复合充填材料抗压强度

    Figure  5.  Compressive strength of red mud composite filling material

    图  6  赤泥复合充填材料XRD图谱

    Figure  6.  XRD patterns of red mud composite filling material

    C-S-H—Calcium silicate hydrate

    图  7  赤泥复合充填材料SEM图像:(a) RM∶FA=7∶3,552 m2/kg;(b) RM∶FA=5∶5,658 m2/kg;(c) RM∶FA=3∶7,780 m2/kg;(d) RM∶FA=3∶7,780 m2/kg

    Figure  7.  SEM images of red mud composite filling materials: (a) RM∶FA=7∶3, 552 m2/kg; (b) RM∶FA=5∶5, 658 m2/kg; (c) RM∶FA=3∶7, 780 m2/kg; (d) RM∶FA=3∶7, 780 m2/kg

    图  8  不同因素下赤泥复合充填材料渗滤液pH值

    Figure  8.  Leachate pH value of red mud composite filling material under different factors

    图  9  赤泥复合充填材料固化机制

    Figure  9.  Solidification mechanism of red mud composite filling material

    图  10  赤泥复合充填材料重金属赋存形态

    Figure  10.  Chemical fractionations of heavy metals in red mud composite filling material

    表  1  原材料化学成分

    Table  1.   Chemical composites of raw materials wt%

    MaterialSiO2Al2O3CaOFe2O3MgOSO3Na2OOthers
    Red mud (RM) 24.62 23.96 18.91 8.01 0.93 0.96 13.61 9.00
    Fly ash (FA) 46.21 37.33 2.84 3.96 0.24 0.85 0.11 8.46
    Flue gas desulfurization gypsum (FGD) 14.20 12.46 29.84 1.46 0.77 40.82 0.06 0.39
    Lime 2.75 0.96 87.87 0.88 6.05 0.82 0.12 0.55
    Cement 21.50 5.46 64.50 4.12 1.98 1.29 0.23 0.92
    下载: 导出CSV

    表  2  赤泥基复合充填材料配比试验设计

    Table  2.   Test design of red mud-based composite filling material

    No.Mass ratio of binding materials
    RMFAFGDLimeCement
    1370.4
    2550.4
    3730.4
    4370.50.4
    53710.4
    6371.50.4
    7370.90.5
    8370.90.7
    9370.90.9
    10370.90.7
    11370.90.9
    12370.91.1
    下载: 导出CSV

    表  3  不同赤泥-粉煤灰质量比的复合充填材料离子浸出浓度

    Table  3.   Ion leaching concentrations of composite filling materials with different mass ratios of RM:FA

    Type of toxic ionLeaching concentration/(mg·L−1)
    AsHgPbCdCrCuMnNi
    RM0.93637.2×10−32.2610.1203.46861.6×10−30.89256.8×10−3
    3∶7<0.1×10−30.91×10−3<0.1×10−3<0.1×10−32.23×10−3<0.1×10−3<0.1×10−30.06×10−3
    5∶5<0.1×10−31.82×10−30.04×10−3<0.1×10−38.69×10−3<0.1×10−30.50×10−31.15×10−3
    7∶33.34×10−35.96×10−30.46×10−370.2×10−325.4×10−32.63×10−320.2×10−35.45×10−3
    GB 8978—1996 (I)0.50.051.00.11.50.52.01.0
    下载: 导出CSV

    表  4  不同粉煤灰比表面积的复合充填材料离子浸出浓度

    Table  4.   Ion leaching concentrations of composite filling materials with different specific surface areas of fly ash

    Type of toxic ionLeaching concentration/(mg·L−1)
    AsHgPbCdCrCuMnNi
    RM0.93637.2×10−32.2610.1203.46861.6×10−30.89256.8×10−3
    552 m2/kg6.04×10−37.01×10−30.84×10−380.1×10−322.3×10−30.87×10−320.1×10−36.06×10−3
    658 m2/kg<0.1×10−31.86×10−30.04×10−3<0.1×10−38.69×10−3<0.1×10−30.50×10−31.15×10−3
    780 m2/kg<0.1×10−30.96×10−3<0.1×10−3<0.1×10−3<0.1×10−3<0.1×10−3<0.1×10−30.45×10−3
    GB 8978-1996 (I)0.50.051.00.11.50.52.01.0
    下载: 导出CSV
  • [1] YE N, CHEN Y, YANG J K, et al. Transformations of Na, Al, Si and Fe species in red mud during synthesis of one-part geopolymers[J]. Cement and Concrete Research,2017,101:123-130. doi: 10.1016/j.cemconres.2017.08.027
    [2] 阚黎黎, 朱嘉伦, 王飞, 等. 聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能[J]. 复合材料学报, 2022, 39(11):5367-5374.

    KAN Lili, ZHU Jialun, WANG Fei, et al. Mechanical properties of polyethylene fiber reinforced red mud-alkali slag composite[J]. Acta Materiae Compositae Sinica,2022,39(11):5367-5374(in Chinese).
    [3] 李宇, 刘月明. 我国冶金固废大宗利用技术的研究进展及趋势[J]. 工程科学学报, 2021, 43(12):1713-1724.

    LI Yu, LIU Yueming. Progress and trend of bulk utilization technology of metallurgical solid wastes in China[J]. Chinese Journal of Engineering,2021,43(12):1713-1724(in Chinese).
    [4] 易龙生, 米宏成, 吴倩, 等. 利用赤泥去除水中污染物的研究进展[J]. 中国有色金属学报, 2022, 32(1):159-172.

    YI Longsheng, MI Hongcheng, WU Qian, et al. Research progress on removing pollutants from water by red mud[J]. The Chinese Journal of Nonferrous Metals,2022,32(1):159-172(in Chinese).
    [5] LIU X, HAN Y X, HE F Y, et al. Characteristic, hazard and iron recovery technology of red mud—A critical review[J]. Journal of Hazardous Materials,2021,420:126542. doi: 10.1016/j.jhazmat.2021.126542
    [6] ZHANG W, LIU X M, WANG Y G, et al. Binary reaction behaviors of red mud based cementitious material: Hydration characteristics and Na+ utilization[J]. Journal of Hazardous Materials,2021,410:124592. doi: 10.1016/j.jhazmat.2020.124592
    [7] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16):172-178.

    LI Keliang, SONG Ziming. Analysis of bayer red mud activation mechanism and performance based on orthogonal experiment[J]. Materials Reports,2022,36(16):172-178(in Chinese).
    [8] WANG Z K, WANG Y M, WU L B, et al. Effective reuse of red mud as supplementary material in cemented paste backfill: Durability and environmental impact[J]. Construction and Building Materials, 2022, 328: 127002.
    [9] HU W, NIE Q K, HUANG B S, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes[J]. Journal of Cleaner Production,2018,186:799-806. doi: 10.1016/j.jclepro.2018.03.086
    [10] GHALEHNOVI M, ASADI SHAMSABADI E, KHODABAKHSHIAN A, et al. Self-compacting architectural concrete production using red mud[J]. Construction and Building Materials,2019,226:418-427. doi: 10.1016/j.conbuildmat.2019.07.248
    [11] KIM Y, LEE Y, KIM M, et al. Preparation of high porosity bricks by utilizing red mud and mine tailing[J]. Journal of Cleaner Production,2019,207:490-497. doi: 10.1016/j.jclepro.2018.10.044
    [12] LI S W, PAN J, ZHU D Q, et al. A new route for separation and recovery of Fe, Al and Ti from red mud[J]. Resources, Conservation and Recycling, 2021, 168: 105314.
    [13] HUA Y M, HEAL K V, FRIESL-HANL W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review[J]. Journal of Hazardous Materials,2017,325:17-30. doi: 10.1016/j.jhazmat.2016.11.073
    [14] LI Y, LIU X M, LI Z P, et al. Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials[J]. Journal of Cleaner Production, 2021, 284: 124777.
    [15] 李召峰, 刘超, 王川, 等. 赤泥-高炉矿渣-钢渣三元体系注浆材料试验研究[J]. 工程科学与技术, 2021, 53(1):203-211.

    LI Zhaofeng, LIU Chao, WANG Chuan, et al. Experimental study on grouting material of red mud-blast furnace slag-steel slag ternary system[J]. Advanced Engineering Sciences,2021,53(1):203-211(in Chinese).
    [16] 丁祥, 潘凯凯, 彭波, 等. 熔融发泡法制备赤泥-高铝粉煤灰基多孔陶瓷[J]. 硅酸盐学报, 2022, 50(3):713-722.

    DING Xiang, PAN Kaikai, PENG Bo, et al. Preparation of porous ceramics with red mud and high-aluminum fly ash by melting foaming method[J]. Journal of the Chinese Ceramic Society,2022,50(3):713-722(in Chinese).
    [17] SUN W, WANG H J, HOU K P. Control of waste rock-tailings paste backfill for active mining subsidence areas[J]. Journal of Cleaner Production,2018,171:567-579. doi: 10.1016/j.jclepro.2017.09.253
    [18] 刘树龙, 王发刚, 李公成, 等. 基于响应面法的复合充填料浆配比优化及微观结构影响机制[J]. 复合材料学报, 2021, 38(8):2724-2736.

    LIU Shulong, WANG Fagang, LI Gongcheng, et al. Optimization of mixture ratio and microstructure influence mechanism of composite filling slurry based on response surface method[J]. Acta Materiae Compositae Sinica,2021,38(8):2724-2736(in Chinese).
    [19] 刘娟红, 周在波, 吴爱祥, 等. 低浓度拜耳赤泥充填材料制备及水化机理[J]. 工程科学学报, 2020, 42(11):1457-1464.

    LIU Juanhong, ZHOU Zaibo, WU Aixiang, et al. Preparation and hydration mechanism of low concentration bayer red mud filling materials[J]. Chinese Journal of Engineering,2020,42(11):1457-1464(in Chinese).
    [20] 高术杰, 倪文, 祝丽萍, 等. 脱硫石膏对赤泥-矿渣胶结充填料强度性能的影响[J]. 中南大学学报(自然科学版), 2013, 44(6):2259-2266.

    GAO Shujie, NI Wen, ZHU Liping, et al. Effect of gypsum on strength performance of cemented backfilling materials of red mud-slag system[J]. Journal of Central South University (Science and Technology),2013,44(6):2259-2266(in Chinese).
    [21] 陈蛟龙, 张娜, 李恒, 等. 赤泥基似膏体充填材料水化特性研究[J]. 工程科学学报, 2017, 39(11):1640-1646.

    CHEN Jiaolong, ZHANG Na, LI Heng, et al. Hydration characteristics of red-mud based paste-like backfill material[J]. Chinese Journal of Engineering,2017,39(11):1640-1646(in Chinese).
    [22] CHEN S J, DU Z W, ZHANG Z, et al. Effects of red mud additions on gangue-cemented paste backfill properties[J]. Powder Technology,2020,367:833-840. doi: 10.1016/j.powtec.2020.03.055
    [23] 刘恒凤, 张吉雄, 周楠, 等. 矸石基胶结充填材料重金属浸出及其固化机制[J]. 中国矿业大学学报, 2021, 50(3):523-531.

    LIU Hengfeng, ZHANG Jixiong, ZHOU Nan, et al. Study of the leaching and solidification mechanism of heavy metals from gangue-based cemented paste backfilling materials[J]. Journal of China University of Mining & Technology,2021,50(3):523-531(in Chinese).
    [24] 中华人民共和国环境保护部. 固体废物 浸出毒性浸出方法 水平振荡法: HJ 557—2010[S]. 北京: 中国标准出版社, 2010.

    Ministry of Environmental Protection of the People's Republic of China. Solid waste—Extraction procedure for leaching toxicity—Horizontal vibration method: HJ 557—2010[S]. Beijing: China Standard Press, 2010(in Chinese).
    [25] 吴爱祥, 姜关照, 兰文涛, 等. 铜炉渣活性激发实验研究及水化机理分析[J]. 中南大学学报(自然科学版), 2017, 48(9):2498-2505.

    WU Aixiang, JIANG Guanzhao, LAN Wentao, et al. Experimental study on copper slag activity excitation and hydration mechanism analysis[J]. Journal of Central South University (Science and Technology),2017,48(9):2498-2505(in Chinese).
    [26] 中华人民共和国国家环境保护局. 污水综合排放标准: GB 8978—1996[S]. 北京: 中国标准出版社, 1998.

    State Environmental Protection Bureau of the People's Republic of China. Integrated wastewater discharge standard: GB 8978—1996[S]. Beijing: China Standard Press, 1998(in Chinese).
    [27] 陈秋松, 张琦, 齐冲冲, 等. 磷石膏充填体强度和浸出毒性的温变规律[J]. 中国有色金属学报, 2021, 31(4):1084-1095.

    CHEN Qiusong, ZHANG Qi, QI Chongchong, et al. Temperature-depending characteristics of strength and leaching toxicity of phosphogympsum-based cemented paste backfill[J]. The Chinese Journal of Nonferrous Metals,2021,31(4):1084-1095(in Chinese).
    [28] LI S C, ZHANG J, LI Z F, et al. Feasibility study on grouting material prepared from red mud and metallurgical wastewater based on synergistic theory[J]. Journal of Hazardous Materials,2021,407:124358. doi: 10.1016/j.jhazmat.2020.124358
    [29] 王登权. 冶金渣中的重元素在胶凝材料中的结合与浸出[D]. 北京: 清华大学, 2021.

    WANG Dengquan. Binding and leaching of heavy metal elements in cementitious materials: A case study on metallurgical slags[D]. Beijing: Tsinghua University 2021(in Chinese).
    [30] 焦伟, 牛勇, 李斌, 等. 基于化学形态分析的城市道路灰尘重金属健康风险评价与人为来源解析[J]. 生态环境学报, 2018, 27(12):2269-2275.

    JIAO Wei, NIU Yong, LI Bin, et al. Health risk assessment and anthropogenic source identification of heavy metals in urban road dusts based on chemical fraction analysis[J]. Ecology and Environmental Sciences,2018,27(12):2269-2275(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  265
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 修回日期:  2023-03-02
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回