Research progress of aqueous magnesium ion battery
-
摘要:
目的 水系镁离子电池作为一种新兴的储能体系有着低成本、原料来源充足、高理论储能能力等优势。但水系电解液和镁自身带来的问题都极大地限制了水系镁离子电池的进一步发展。本文综述近年相关文献来对有关水系镁离子电池的最新研究进行总结并做出展望。 方法 综述有关水系镁离子电池的相关研究,从电解液、电极材料、新兴表征分析方法等方面总结存在的问题及相应研究成果,并对未来水系镁离子电池研究方向进行展望。 结果 目前水系镁离子电池尚未得到充分发展,其受限因素主要来自于水系电解液存在的电化学窗口窄、水分解产气等固有问题,正极材料匹配性问题,以及负极侧的枝晶、析氢等问题。电解液中电解质的种类及浓度对其性质有重要影响,在水系电池领域内有降低电解液游离水含量、引入chaotropic阴离子、构建多元阳离子体系、引入电解质添加剂等策略拓宽电解液电化学窗口、提高其工作电压、增强电池高低温极端条件下电化学性能。而“盐包水”等策略虽然能够拓宽水系电池的电化学稳定窗口,但其成本相对较高且镁离子迁移速率也并未得到提升。相较而言,在常规浓度电解液中构建混合阳离子补强和添加改变离子溶剂化结构的电解液添加剂等策略相对来说更加有发展前景。对于电极材料,如MgMnO、MgFeMnO和LiMnO•HO等正极材料来说,无论是单独作为正极材料还是与碳纳米管、石墨等材料制成复合材料,都已证明了他们在水系镁离子电池中的优越性。由于金属镁在水溶液中的不稳定性,可通过表面包覆改性、微合金化等方法提高镁金属及其合金直接作为水系电池负极的应用性。其它负极材料,如近年来新兴的聚合物负极材料,将传统的金属负极的溶解沉积的电化学过程替代为活性位点与离子反应过程,这将有效抑制枝晶等副反应的发生,也有助于提升水系镁离子电池的性能。除此之外也总结了一些计算手段、新兴的实验技术方法在水系镁离子电池体系中的应用。 结论 本文总结了目前水系镁离子电池受限因素和相应的策略,电解液中电解质的种类及浓度对其性质有重要影响,可通过适当引入chaotropic阴离子、构建多元阳离子体系、引入电解质添加剂等策略提升电池电化学性能。目前锰酸镁、锰酸铁镁等的复合正极材料展现了他们的优越性。此外对于负极材料,可通过表面包覆改性、微合金化等方法。也可以选用其他负极材料,如聚合物材料,帮助发挥水系镁离子电池的潜力。第一性原理密度泛函理论(DFT)等计算手段对水系镁离子电池体系的研究也卓有成效,结合机器学习、原位光学观察、EIR改进的拉曼光谱技术、EC-AFM原位观察技术等高精度实验测试方法和技术,相信在未来水系镁离子电池体系将得到更深入的理解以及更广泛的贴合实际场景的应用。 Abstract: As a newly developed energy storage system, aqueous magnesium ion battery takes its edge by lower cost, more abundant source of raw materials, higher theoretical energy storage capacity. However, the problems brought by aqueous electrolytes and magnesium themselves greatly limit the further development of aqueous magnesium ion batteries. Here, the influence of the type and concentration of anions in aqueous electrolyte and electrolyte additives on the battery performance is described, and the research of some electrode materials, including new materials and new theories, is introduced. Finally, some efficient characterization and analysis methods are summarized. -
图 5 电化学转化法制备的MgMn2O4及其电化学性能[55]:(a) MgMn2O4材料的恒流充放电测试(GCD);(b) MgMn2O4材料的循环性能;(c) 循环伏安(CV)曲线;(d) MgMn2O4材料的SEM图像;(e) MgMn2O4材料的TEM图像
Figure 5. MgMn2O4 prepared by electrochemical conversion method and its electrochemical performance[55]: (a) Galvanostatic charge-discharge (GCD) test of MgMn2O4 material; (b) Cyclic performance of MgMn2O4 material; (c) Cyclic voltammetry (CV) curves; (d) SEM image of MgMn2O4 material; (e) TEM image of MgMn2O4 material
图 10 利用电化学原子力显微镜技术 (EC-AFM) 原位观测双三氟甲基磺酰亚胺锂(LiTFSI)水电解质存在下的固体电解质界面(SEI)层[81]
Figure 10. In-situ observation of solid electrolyte interphase (SEI) layer in the presence of lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)-water electrolyte by electrochemical-controlled atomic force microscopy (EC-AFM)[81]
OCP—Open circuit potential
表 1 水系电解液主要研究方向
Table 1. Main research directions of aqueous electrolyte
Research direction Specific research Reference Anion type Cl− as the main anion [26-29] Kosmotropic anion as the main anion, e.g., SO42− [30-32] Chaotropic anion as the main anion, e.g., NO3− [19] Electrolyte concentration “Water-in-salt” electrolyte [33-35] Hydrated eutectic electrolyte system [19] Hydrate melts, water in water ionomers, molecular crowding, etc. [36-40] Mixed cation Mg/Na, Mg/Zn, etc. [29, 41-42] Electrolyte additive Improve battery performance or alleviate various problems caused by electrolyte [43-44] -
[1] LI W, DAHN J R, WAINWRIGHT D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science,1994,264(5162):1115-1118. doi: 10.1126/science.264.5162.1115 [2] ZHU K, LI Z, SUN Z, et al. Inorganic electrolyte for low-temperature aqueous sodium ion batteries[J]. Small,2022,18(14):2107662. doi: 10.1002/smll.202107662 [3] ZHANG Y, XU J, LI Z, et al. All-climate aqueous Na-ion batteries using "water-in-salt" electrolyte[J]. Science Bulletin,2022,67(2):161-170. doi: 10.1016/j.scib.2021.08.010 [4] HOU Z, ZHANG X, CHEN J, et al. Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte[J]. Advanced Energy Materials,2022,12(14):2104053. doi: 10.1002/aenm.202104053 [5] LI C, DENG W, LI Y, et al. Iron phosphate hydroxide hydrate as a novel anode material for advanced aqueous full potassium-ion batteries[J]. Chemical Communications,2022,58(55):7702-7705. doi: 10.1039/D2CC01798A [6] LIU T, LIU K T, WANG J, et al. Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery[J]. Energy Storage Materials,2021,41:133-140. doi: 10.1016/j.ensm.2021.06.001 [7] JI B, ZHANG F, SONG X, et al. A novel potassium-ion-based dual-ion battery[J]. Advanced Materials,2017,29(19):1700519. doi: 10.1002/adma.201700519 [8] EJIGU A, LE FEVRE L W, ELGENDY A, et al. Optimization of electrolytes for high-performance aqueous aluminum-ion batteries[J]. ACS Applied Materials & Interfaces,2022,14(22):25232-25245. [9] DAS S K, MAHAPATRA S, LAHAN H. Aluminium-ion batteries: Developments and challenges[J]. Journal of Materials Chemistry A,2017,5(14):6347-6367. doi: 10.1039/C7TA00228A [10] DAI Q, LI L, HU B, et al. One-step preparation of MnO2 electrode for secondary aqueous zinc ion batteries by electrodeposition[J]. Materials Today Communications,2022,31:103578. doi: 10.1016/j.mtcomm.2022.103578 [11] YAN H, ZHANG X, YANG Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews,2022,452:214297. doi: 10.1016/j.ccr.2021.214297 [12] ZHENG J, HUANG Z, MING F, et al. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries[J]. Small,2022,18(21):2200006. doi: 10.1002/smll.202200006 [13] TANG W, ZHU Y, HOU Y, et al. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging[J]. Energy & Environmental Science,2013,6(7):2093-2104. [14] GAO P, ZHAO X, ZHAO-KARGER Z, et al. Vanadium oxychloride/magnesium electrode systems for chloride ion batteries[J]. ACS Applied Materials & Interfaces,2014,6(24):22430-22435. [15] CHEN L, DONG X, WANG Y, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature Communications,2016,7:11741. doi: 10.1038/ncomms11741 [16] DENG M, WANG L, VAGHEFINAZARI B, et al. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives[J]. Energy Storage Materials,2021,43:238-247. doi: 10.1016/j.ensm.2021.09.008 [17] YOO H D, SHTERENBERG I, GOFER Y, et al. Mg rechargeable batteries: An on-going challenge[J]. Energy & Environmental Science,2013,6(8):2265-2279. [18] LEE B, JO E, CHOI J, et al. Cr-doped lithium titanate nanocrystals as Mg ion insertion materials for Mg batteries[J]. Journal of Materials Chemistry A,2019,7(44):25619-25627. doi: 10.1039/C9TA08362F [19] ZHU Y, GUO X, LEI Y, et al. Hydrated eutectic electrolytes for high-performance Mg-ion batteries[J]. Energy & Environmental Science,2022,15(3):1282-1292. [20] ZHANG H, CAO D, BAI X. High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode[J]. Journal of Power Sources,2019,444:227299. doi: 10.1016/j.jpowsour.2019.227299 [21] MACLAUGHLIN C M. Status and outlook for magnesium battery technologies: A conversation with stan whittingham and sarbajit banerjee[J]. ACS Energy Letters,2019,4(2):572-575. doi: 10.1021/acsenergylett.9b00214 [22] DAVIDSON R, VERMA A, SANTOS D, et al. Formation of magnesium dendrites during electrodeposition[J]. ACS Energy Letters,2019,4(2):375-376. doi: 10.1021/acsenergylett.8b02470 [23] KONG L, XING Y, PECHT M G. In-situ observations of lithium dendrite growth[J]. IEEE Access,2018,6:8387-8393. doi: 10.1109/ACCESS.2018.2805281 [24] BAI X, CAO D, JIANG Z, et al. Exploration of hydrated lithium manganese oxide with a nanoribbon structure as cathodes in aqueous lithium ion and magnesium ion batteries[J]. Inorganic Chemistry Frontiers,2022,9(3):485-493. doi: 10.1039/D1QI01222C [25] ZHANG H, YE K, SHAO S, et al. Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery[J]. Electrochimica Acta,2017,229:371-379. doi: 10.1016/j.electacta.2017.01.110 [26] LIU T, PENG N, ZHANG X, et al. Insight into anion storage batteries: Materials, properties and challenges[J]. Energy Storage Materials,2021,42:42-67. doi: 10.1016/j.ensm.2021.07.011 [27] LIU Z, LI X, HE J, et al. Is proton a charge carrier for δ-MnO2 cathode in aqueous rechargeable magnesium-ion batteries?[J]. Journal of Energy Chemistry,2022,68:572-579. doi: 10.1016/j.jechem.2021.12.016 [28] ZHANG Y Q, YAO A Q, YANG L, et al. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries[J]. Acta Physica Sinica,2021,70(16):168201. doi: 10.7498/aps.70.20202130 [29] ZHANG S, ZHAO C, ZHU K, et al. An environment-friendly high-performance aqueous Mg-Na hybrid-ion battery using an organic polymer anode[J]. Energy Environmental Materials,2022,0:1-8. doi: 10.1002/eem2.12388 [30] REBER D, GRISSA R, BECKER M, et al. Anion selection criteria for water-in-salt electrolytes[J]. Advanced Energy Materials,2021,11(5):2002913. doi: 10.1002/aenm.202002913 [31] ZHANG Q, XIA K, MA Y, et al. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries[J]. ACS Energy Letters,2021,6(8):2704-2712. doi: 10.1021/acsenergylett.1c01054 [32] LIU Z, PANG G, DONG S, et al. An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system[J]. Electrochimica Acta,2019,311:1-7. doi: 10.1016/j.electacta.2019.04.130 [33] SUO L, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science,2015,350(6263):938-943. doi: 10.1126/science.aab1595 [34] GONZÁLEZ M A, AKIBA H, BORODIN O, et al. Structure of water-in-salt and water-in-bisalt electrolytes[J]. Physical Chemistry Chemical Physics,2022,24(18):10727-10736. doi: 10.1039/D2CP00537A [35] KULKARNI P, GHOSH D, BALAKRISHNA R G. Recent progress in 'water-in-salt' and 'water-in-salt'-hybrid-electrolyte-based high voltage rechargeable batteries[J]. Sustainable Energy & Fuels,2021,5(6):1619-1654. [36] YAMADA Y, USUI K, SODEYAMA K, et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries[J]. Nature Energy,2016,1(10):16129. doi: 10.1038/nenergy.2016.129 [37] ZHENG Q, MIURA S, MIYAZAKI K, et al. Sodium- and potassium-hydrate melts containing asymmetric imide anions for high-voltage aqueous batteries[J]. Angewandte Chemie International Edition,2019,58(40):14202-14207. doi: 10.1002/anie.201908830 [38] HE X, YAN B, ZHANG X, et al. Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries[J]. Nature Communications,2018,9(1):5320. doi: 10.1038/s41467-018-07331-6 [39] WANG W, YANG C, CHI X, et al. Small-molecular crowding electrolyte enables high-voltage and high-rate supercapacitors[J]. Energy Technology,2021,9(12):2100684. doi: 10.1002/ente.202100684 [40] XIE J, GUAN Y, HUANG Y, et al. Solid-electrolyte interphase of molecular crowding electrolytes[J]. Chemistry of Materials,2022,34(11):5176-5183. doi: 10.1021/acs.chemmater.2c00722 [41] TANG Y, LI X, LV H, et al. High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation[J]. Angewandte Chemie International Edition,2021,60(10):5443-5452. doi: 10.1002/anie.202013315 [42] SOUNDHARRAJAN V, SAMBANDAM B, KIM S, et al. Aqueous magnesium zinc hybrid battery: An advanced high-voltage and high-energy MgMn2O4 cathode[J]. ACS Energy Letters,2018,3(8):1998-2004. doi: 10.1021/acsenergylett.8b01105 [43] FU Q, WU X, LUO X, et al. High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization[J]. Advanced Functional Materials,2022,32(16):2110674. doi: 10.1002/adfm.202110674 [44] WANG P, XU J, GONG Y, et al. Study on electrolyte additives of water-based magnesium batteries[J]. IOP Conference Series: Earth and Environmental Science,2021,781(4):042015. doi: 10.1088/1755-1315/781/4/042015 [45] 张宏宇. 水系镁离子电池Mg-Mn氧化物正极材料和Fe-V氧化物负极材料的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.ZHANG Hongyu. Study on Mg-Mn oxide cathode materials and Fe-V oxide anode materials for aqueous magnesium ion batteries[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese). [46] WANG F, FAN X, GAO T, et al. High-voltage aqueous magnesium ion batteries[J]. ACS Central Science,2017,3(10):1121-1128. doi: 10.1021/acscentsci.7b00361 [47] YANG W, DU X, ZHAO J, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries[J]. Joule,2020,4(7):1557-1574. doi: 10.1016/j.joule.2020.05.018 [48] VAGHEFINAZARI B, HÖCHE D, LAMAKA S V, et al. Tailoring the Mg-air primary battery performance using strong complexing agents as electrolyte additives[J]. Journal of Power Sources,2020,453:227880. doi: 10.1016/j.jpowsour.2020.227880 [49] SNIHIROVA D, WANG L, LAMAKA S V, et al. Synergistic mixture of electrolyte additives: A route to a high-efficiency Mg-air battery[J]. The Journal of Physical Chemistry Letters,2020,11(20):8790-8798. doi: 10.1021/acs.jpclett.0c02174 [50] VAGHEFINAZARI B, SNIHIROVA D, WANG C, et al. Exploring the effect of sodium salt of ethylenediaminetetraacetic acid as an electrolyte additive on electrochemical behavior of a commercially pure Mg in primary Mg-air batteries[J]. Journal of Power Sources,2022,527:231176. doi: 10.1016/j.jpowsour.2022.231176 [51] FAN H, ZHANG X, XIAO J, et al. Simultaneous optimization of solvation structure and water-resistant capability of MgCl2-based electrolyte using an additive combination of organic and inorganic lithium salts[J]. Energy Storage Materials,2022,51:873-881. doi: 10.1016/j.ensm.2022.07.023 [52] MENG Z, LI Z, WANG L, et al. Surface engineering of a Mg electrode via a new additive to reduce overpotential[J]. ACS Applied Materials & Interfaces,2021,13(31):37044-37051. [53] ZHANG J, GUAN X, LV R, et al. Rechargeable Mg metal batteries enabled by a protection layer formed in vivo[J]. Energy Storage Materials,2020,26:408-413. doi: 10.1016/j.ensm.2019.11.012 [54] WEN B, YANG C, WU J, et al. Water-induced 3D MgMn2O4 assisted by unique nanofluidic effect for energy-dense and durable aqueous magnesium-ion batteries[J]. Chemical Engineering Journal,2022,435:134997. doi: 10.1016/j.cej.2022.134997 [55] ZHANG D, CHEN Q, ZHANG J, et al. MgMn2O4/multiwalled carbon nanotubes composite fabricated by electrochemical conversion as a high-performance cathode material for aqueous rechargeable magnesium ion battery[J]. Journal of Alloys and Compounds,2021,873:159872. doi: 10.1016/j.jallcom.2021.159872 [56] ZHANG Y, LIU G, ZHANG C, et al. Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries[J]. Chemical Engineering Journal,2020,392:123652. doi: 10.1016/j.cej.2019.123652 [57] MANDAI T, SOMEKAWA H. Ultrathin magnesium metal anode—An essential component for high-energy-density magnesium battery materialization[J]. Batteries & Supercaps,2022,5(9):e202200153. [58] XU Y, LIU Z, ZHENG X, et al. Solid electrolyte interface regulated by solvent-in-water electrolyte enables high-voltage and stable aqueous Mg-MnO2 batteries[J]. Advanced Energy Materials,2022,12(22):2103352. doi: 10.1002/aenm.202103352 [59] WANG F, WU D, ZHUANG Y, et al. Modification of a Cu mesh with nanowires and magnesiophilic Ag sites to induce uniform magnesium deposition[J]. ACS Applied Materials & Interfaces,2022,14(27):31148-31159. [60] ZHANG H, YE K, ZHU K, et al. High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode[J]. Chemistry,2017,23(67):17118-17126. doi: 10.1002/chem.201703806 [61] LIANG Y, JING Y, GHEYTANI S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials,2017,16(8):841-848. doi: 10.1038/nmat4919 [62] BIN D, HUO W, YUAN Y, et al. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery[J]. Chemistry,2020,6(4):968-984. doi: 10.1016/j.chempr.2020.02.001 [63] CANG R, SONG Y, YE K, et al. Preparation of organic poly material as anode in aqueous aluminum-ion battery[J]. Journal of Electroanalytical Chemistry,2020,861:113967. doi: 10.1016/j.jelechem.2020.113967 [64] CANG R, YE K, SHAO S, et al. A new perylene-based tetracarboxylate as anode and LiMn2O4 as cathode in aqueous Mg-Li batteries with excellent capacity[J]. Chemical Engineering Journal,2021,405:126783. doi: 10.1016/j.cej.2020.126783 [65] CHEN L, BAO J L, DONG X, et al. Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode[J]. ACS Energy Letters,2017,2(5):1115-1121. doi: 10.1021/acsenergylett.7b00040 [66] SUN T, DU H, ZHENG S, et al. Inverse-spinel Mg2MnO4 material as cathode for high-performance aqueous magnesium-ion battery[J]. Journal of Power Sources,2021,515:230643. doi: 10.1016/j.jpowsour.2021.230643 [67] YUWONO J A, BIRBILIS N, TAYLOR C D, et al. Aqueous electrochemistry of the magnesium surface: Thermodynamic and kinetic profiles[J]. Corrosion Science,2019,147:53-68. doi: 10.1016/j.corsci.2018.10.014 [68] MOSES I A, JOSHI R P, OZDEMIR B, et al. Machine learning screening of metal-ion battery electrode materials[J]. ACS Applied Materials & Interfaces,2021,13(45):53355-53362. doi: 10.1021/acsami.1c04627 [69] LIU Y, GUO B, ZOU X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Materials,2020,31:434-450. doi: 10.1016/j.ensm.2020.06.033 [70] AYKOL M, HERRING P, ANAPOLSKY A. Machine learning for continuous innovation in battery technologies[J]. Nature Reviews Materials,2020,5(10):725-727. doi: 10.1038/s41578-020-0216-y [71] SHU J, SHUI M, XU D, et al. Large-scale synthesis of Li1.15V3O8 nanobelts and their lithium storage behavior studied by in situ X-ray diffraction[J]. Journal of Materials Chemistry,2012,22(7):3035-3043. doi: 10.1039/c1jm14894j [72] LI Y, ZHENG R, YU H, et al. Observation of ZrNb14O37 nanowires as a lithium container via in situ and ex situ techniques for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(25):22429-22438. doi: 10.1021/acsami.9b05841 [73] CHEN B, ZHANG H, XUAN J, et al. Seeing is believing: In situ/operando optical microscopy for probing electrochemical energy systems[J]. Advanced Materials Technologies,2020,5(10):2000555. doi: 10.1002/admt.202000555 [74] DU F, DAO T A, BAUER A, et al. Understanding the performance losses and "invasiveness" of in situ characterization steps during carbon corrosion experiments in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta,2022,402:139537. doi: 10.1016/j.electacta.2021.139537 [75] ZHENG J, GUAN C, LI H, et al. Unraveling the morphological evolution mechanism of solid sulfur species in lithium-sulfur batteries with operando light microscopy[J]. Journal of Energy Chemistry,2022,73:460-468. doi: 10.1016/j.jechem.2022.04.041 [76] GHIMIRE P C, BHATTARAI A, LIM T M, et al. In-situ tools used in vanadium redox flow battery research—Review[J]. Batteries,2021,7(3):53. doi: 10.3390/batteries7030053 [77] CUI Y, HE Y, YU W, et al. In-situ observation of the Zn electrodeposition on the planar electrode in the alkaline electrolytes with different viscosities[J]. Electrochimica Acta,2022,418:140344. doi: 10.1016/j.electacta.2022.140344 [78] ZHAO Y, DU A, DONG S, et al. A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes[J]. ACS Energy Letters,2021,6:2594-2601. doi: 10.1021/acsenergylett.1c01243 [79] D'AMARIO L, STELLA M B, EDVINSSON T, et al. Towards time resolved characterization of electrochemical reactions: Electrochemically-induced Raman spectroscopy[J]. Chemical Science,2022,13(36):10734-10742. doi: 10.1039/D2SC01967A [80] ZHANG Z, SAID S, SMITH K, et al. Characterizing batteries by in situ electrochemical atomic force microscopy: A critical review[J]. Advanced Energy Materials,2021,11(38):2101518. doi: 10.1002/aenm.202101518 [81] ZHANG H, WANG D, SHEN C. In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries[J]. Applied Surface Science,2020,507:145059. doi: 10.1016/j.apsusc.2019.145059 -