留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蛋白质分散的碳纳米管/环氧树脂粘结剂的粘结性能

赵俊捷 陶文武 曾利建 李毅超 李仁府 王坤

赵俊捷, 陶文武, 曾利建, 等. 基于蛋白质分散的碳纳米管/环氧树脂粘结剂的粘结性能[J]. 复合材料学报, 2022, 40(0): 1-9
引用本文: 赵俊捷, 陶文武, 曾利建, 等. 基于蛋白质分散的碳纳米管/环氧树脂粘结剂的粘结性能[J]. 复合材料学报, 2022, 40(0): 1-9
Junjie ZHAO, Wenwu TAO, Lijian ZENG, Yichao LI, Renfu LI, Kun WANG. Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive[J]. Acta Materiae Compositae Sinica.
Citation: Junjie ZHAO, Wenwu TAO, Lijian ZENG, Yichao LI, Renfu LI, Kun WANG. Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive[J]. Acta Materiae Compositae Sinica.

基于蛋白质分散的碳纳米管/环氧树脂粘结剂的粘结性能

基金项目: 中央高校基本科研业务费专项资金资助 (2019 kfyXJJS060)
详细信息
    通讯作者:

    李毅超,博士,讲师,研究方向为航空复合材料、树脂基纳米复合材料 E-mail:liyichao@hust.edu.cn

    李仁府,博士,教授,研究方向为飞行器设计、多功能航空复合结构设计 E-mail:renfu.li@hust.edu.cn

  • 中图分类号: TB332

Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive

  • 摘要: 碳纳米管/环氧树脂因其优良的力学与粘结性能可广泛应用于航空航天等高端领域结构件的胶结连接。然而如何有效降低碳纳米管的团聚性,保证制备工艺的低成本与绿色环保是该纳米粘结剂能够实际应用的关键。为此,本文提出一种基于蛋白质分散的碳纳米管增强环氧树脂粘接剂并对其粘结性能进行了研究。结果表明,经过酸或碱性环境变性处理的大豆分离蛋白能够有效降低碳纳米管的团聚性并显著提高环氧树脂的粘接性能,当碳纳米管质量分数为0.1%时,经酸、碱性处理的大豆分离蛋白-碳纳米管/环氧树脂粘结剂的粘结性能增幅分别为26.6%、26.7%;而当碳纳米管质量分数增加到0.3%时,两种处理方法的大豆分离蛋白-碳纳米管/环氧树脂粘结剂的粘结性能增幅分别为10.2%和18.3%,碱处理结果比酸处理提升79%。

     

  • 图  1  碳纤维粘接板: (a)碳纤板与玻纤组合; (b)粘接板固化、切割; (c)粘接板三点弯实验; (d)粘接板实物组成图

    Figure  1.  Carbon fiber bonding board: (a) carbon fiber board and glass fiber combination; (b) bonding board curing and cutting; (c)bonding board three-point bending experiment; (d)bonding board physical composition diagram

    图  2  三点弯测试平台及显微镜

    Figure  2.  Three-point bending test platform and microscope

    图  3  (a)质量分数0.1 wt%下不同改性处理CNT动态散射实验测量粒子直径; (b) a图局部放大图; (c)静置一周后测量改性CNT粒子直径

    Figure  3.  (a)Particle diameters measured by dynamic scattering experiments of CNTs with different modification treatments; (b)Partial enlarged view of a figure; (c) Particle diameters of modified CNTs were measured after standing for a week

    图  4  质量分数0.1 wt%下不同改性处理CNT与原始大豆分离蛋白傅里叶红外光谱图

    Figure  4.  Fourier transform infrared spectra of different modified CNTs and raw soybean protein isolates at 0.1 wt% mass fraction

    图  5  升温速率为20 K/min下不同改性处理CNT与原始大豆分离蛋白热重实验结果图

    Figure  5.  Thermogravimetric experimental results of different modified CNTs and raw soybean protein isolate at a heating rate of 20 K/min

    图  6  质量分数0.1 wt%、0.3 wt%下未改性CNT粘接剂粘接头断裂过程

    Figure  6.  Fracture process of unmodified CNT adhesive at mass fraction of 0.1 wt% and 0.3 wt%

    图  7  不同质量分数下未改性CNT增强粘接剂失效形式与失效载荷

    Figure  7.  Failure modes and failure loads of unmodified CNT-reinforced adhesives under different mass fractions

    图  8  质量分数0.1 wt%蛋白质酸碱改性CNT增强粘接剂粘接头断裂过程

    Figure  8.  Fracture process of bond joints of 0.1 wt% protein acid-base modified CNT-reinforced adhesive

    图  9  质量分数0.1 wt%、0.3 wt%酸碱变性处理下CNT增强粘接剂胶结头失效载荷

    Figure  9.  Failure load of CNT-reinforced adhesive bonding head under acid-base denaturation treatment with mass fraction of 0.1 wt% and 0.3 wt%

    图  10  大豆分离蛋白修饰碳纳米管表面机制示意图

    Figure  10.  Mechanism of surface modification of carbon nanotubes with soybean protein isolate

  • [1] Yudhanto A, Alfano M, Lubineau G. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review[J]. Applied Science and Manufacturing,2021,147:106443. doi: 10.1016/j.compositesa.2021.106443
    [2] Amitkumar R, Asokan R, Jhanji KP, et al. Investigation of tensile properties of carbon/epoxy composite joints with and without carbon nanotubes[J]. International Journal of Vehicle Structures Systems,2019,11(2):209-213.
    [3] Kahraman R, Al-Harthi M. Moisture diffusion into aluminum powder-filled epoxy adhesive in sodium chloride solutions[J]. International Journal of Adhesion and Adhesives,2005,25(4):337-341. doi: 10.1016/j.ijadhadh.2004.10.003
    [4] Aliakbari M, Jazani OM, Sohrabian M, et al. Multi-nationality epoxy adhesives on trial for future nanocomposite developments[J]. Progress in organic coatings,2019,133:376-386. doi: 10.1016/j.porgcoat.2019.04.076
    [5] Hao B, Mu L, Ma Q, et al. Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks[J]. Composites Science and Technology,2018,163:162-170. doi: 10.1016/j.compscitech.2018.05.017
    [6] Gong S, Wu D, Li Y, Xiao T, Wang Y, et al. Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite[J]. Carbon,2018,137:188-195. doi: 10.1016/j.carbon.2018.05.029
    [7] 朱劲, 单人为, 李琴等. 几种常规改性方法对大豆分离蛋白化学结构的影响[J]. 浙江林业科技, 2014:1001-3776.
    [8] Chen JJ, Yan LF, Song WY. Interfacial characteristics of carbon nanotube-polymer composites: A review[J]. Applied Science and Manufacturing,2018,114:149-169. doi: 10.1016/j.compositesa.2018.08.021
    [9] Ata MS, Poon R, Syed AM, Milne J, Zhitomirsky I. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes[J]. Carbon,2018,130:584-598. doi: 10.1016/j.carbon.2018.01.066
    [10] Kumar P, Sengupta A, Deb AKS, Ali SM. Poly (amidoamine) dendrimer functionalized carbon nanotube for efficient sorption of trivalent f-elements: a Comparison between 1 st and 2 nd generation[J]. ChemitrySelect,2017,2(3):975-985. doi: 10.1002/slct.201601550
    [11] Zhu J, Kim J D, Peng H, Margrave J L. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization[J]. nano letters,2003,3(8):1107-1113. doi: 10.1021/nl0342489
    [12] Li CC, Lin JL, Huang SJ. A new and acid-exclusive method for dispersing carbon multi-walled nanotubes in aqueous suspensions[J]. Colloids and Surf A:Physieochemical and Engineering Aspects,2007,297(1-3):275-281.
    [13] Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review[J]. Composites Part A:Applied Science and Manufacturing,2010,41(10):1345-1367. doi: 10.1016/j.compositesa.2010.07.003
    [14] Madni I, Hwang CY, Park SD, Choa YH, et al. Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids Surf[J]. Physicochemical Engineering Aspects,2010,358(1-3):101-107. doi: 10.1016/j.colsurfa.2010.01.030
    [15] Hashim PK, Bergueiro J, Meijer EW, Aida T. Supramolecular polymerization: a conceptual expansion for innovative materials[J]. Progress in Polymer Science,2020,105:101250. doi: 10.1016/j.progpolymsci.2020.101250
    [16] Ghosh A, Rao KV, Voggu R, George SJ. Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules[J]. Chemical Physics Letters,2010,488(4-6):198-201. doi: 10.1016/j.cplett.2010.02.021
    [17] Piao L, Liu Q, Li Y, Wang C. Adsorption of L-phenylalanine on single-walled carbon nanotubes[J]. J. Phys. Chem. C,2008,112(8):2857-2863. doi: 10.1021/jp077047s
    [18] Wang Z, Chen Y. Supramolecular hydrogels hybridized with single-walled carbon nanotubes[J]. Macromolecules,2007,40(9):3402-3407. doi: 10.1021/ma0702593
    [19] Kinloch IA, Suhr J, Lou J, Young RJ. Composites with carbon nanotubes and graphene: an outlook[J]. Science,2018,362(6414):547-553. doi: 10.1126/science.aat7439
    [20] Subramanian AS, Tey JN, Zhang LY, et al. Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids [J]. Polymer 2016, 82: 285-294.
    [21] Ghosh PK, Patel A, Kumar K. Adhesive joining of copper using nanofiller composite adhesive[J]. Polymer,2016,87:159-169. doi: 10.1016/j.polymer.2016.02.006
    [22] Lee J, Kim J. Improvement of thermal conductivity and latent heat of cellulose film using surfactant and surface-treated CNT with stearic acid[J]. Composites Part A:Applied Science and Manufacturing,1202,2,156:106897.
  • 加载中
计量
  • 文章访问数:  99
  • HTML全文浏览量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 录用日期:  2022-04-04
  • 修回日期:  2022-03-31
  • 网络出版日期:  2022-04-18

目录

    /

    返回文章
    返回