留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声辅助制备的LaFeO3/PS催化可见光芬顿降解盐酸四环素

戈晓东 孟冠华 刘宝河 张林森 杨建华 程洛闻

戈晓东, 孟冠华, 刘宝河, 等. 超声辅助制备的LaFeO3/PS催化可见光芬顿降解盐酸四环素[J]. 复合材料学报, 2022, 39(0): 1-15
引用本文: 戈晓东, 孟冠华, 刘宝河, 等. 超声辅助制备的LaFeO3/PS催化可见光芬顿降解盐酸四环素[J]. 复合材料学报, 2022, 39(0): 1-15
Xiaodong GE, Guanhua MENG, Baohe LIU, Linsen ZHANG, Jianhua YANG, Luowen CHENG. Study of the degradation of tetracycline by visible light Fenton catalyzed by ultrasound-assisted LaFeO3/PS[J]. Acta Materiae Compositae Sinica.
Citation: Xiaodong GE, Guanhua MENG, Baohe LIU, Linsen ZHANG, Jianhua YANG, Luowen CHENG. Study of the degradation of tetracycline by visible light Fenton catalyzed by ultrasound-assisted LaFeO3/PS[J]. Acta Materiae Compositae Sinica.

超声辅助制备的LaFeO3/PS催化可见光芬顿降解盐酸四环素

基金项目: 安徽高校自然科学研究重点项目(KJ2017A065);2017年度高校优秀骨干青年人才国内外访学研修项目(gxfx2017019)
详细信息
    通讯作者:

    孟冠华,教授,硕士生导师,研究方向:污水处理及资源化 E-mail:mengguanhua@163.com

  • 中图分类号: TB333

Study of the degradation of tetracycline by visible light Fenton catalyzed by ultrasound-assisted LaFeO3/PS

  • 摘要: 粉末状LaFeO3材料具有易团聚、分离困难等缺点,规模化应用中受到限制。聚苯乙烯树脂(PS)上沉积粉末状催化剂,弥补了以上粉末材料的不足。为此,本研究采用超声辅助溶胶-凝胶和水热法,在PS上沉积了自组装形成的LaFeO3凝胶微球,制得了LaFeO3/PS催化剂,并对其结构和性能进行了系统的研究。LaFeO3凝胶微球在PS上的分散分布使LaFeO3的禁带宽度变宽,从而增加了氧化还原能力,并解决了催化剂团聚等问题,提高了LaFeO3的光芬顿催化活性。在La∶Fe∶CA(柠檬酸)摩尔比=1∶1∶2、超声40 min、水热时间18 h、水热温度90℃、LaFeO3起始剂/PS质量比=32∶1的制备条件制得的复合材料,在可见光下催化芬顿降解盐酸四环素(TC),TC的去除率可达96.51%(k=0.0160 min−1)。自由基捕获实验表明,·O2是主要活性物种。结合捕获实验提出了TC的降解机制。通过LC/MS分析,得到了TC的降解路径。该技术提高了催化剂的稳定性,高效利用了太阳能,是一种很有前途的有机污染物降解技术。

     

  • 图  1  (a) LaFeO3/聚苯乙烯树脂(PS)样品制备流程图;(b) XPA-7(G4)光催化反应仪

    Figure  1.  (a) Sample preparation flow chart of LaFeO3/polystyrene resin (PS); (b) XPA-7 (G4) photocatalytic reaction instrument

    图  2  La∶ Fe∶ CA的摩尔比对LaFeO3/PS催化性能的影响(超声波功率100 W,频率40 kHz,超声辅助时间40 min,水热温度90℃,水热时间18 h,LaFeO3起始剂/聚苯乙烯质量比=32∶1)

    Figure  2.  Influence of the molar ratio of La∶ Fe∶ CA on the catalytic performance of LaFeO3/PS (P=100 W, f= 40 kHz, tu=40 min, T=90°C, th=18 h, LaFeO3 initiator/polystyrene mass ratio = 32∶1)

    图  3  (a)超声时间对LaFeO3/PS催化性能的影响(La∶Fe∶CA的摩尔比=1∶1∶2,超声功率100 W,频率40 kHz,水热温度90℃,水热时间18 h,LaFeO3起始剂/聚苯乙烯质量比=32∶1);(b) 水热温度对LaFeO3/PS催化性能的影响(La∶Fe∶CA的摩尔比=1∶1∶2,超声功率为100 W,频率40 kHz,超声辅助时间为40 min,水热时间18 h,LaFeO3起始剂/PS质量比=32∶1)

    Figure  3.  (a)The effect of ultrasound time on the catalytic performance of LaFeO3/PS (Molar ratio of La∶Fe∶CA=1∶1∶2, P=100 W, f=40 kHz, T=90°C, th=18 h, LaFeO3 initiator/polystyrene mass ratio = 32∶1); (b) The influence of hydrothermal temperature on the catalytic performance of LaFeO3/PS (Molar ratio of La∶Fe∶CA = 1∶1∶2, P= 100 W, f=40 kHz, tu=40 min, T=90°C ,th=18 h, LaFeO3 initiator/PS mass ratio = 32∶1)

    图  4  水热时间对LaFeO3/PS催化性能的影响(La∶Fe∶CA的摩尔比=1∶1∶2,超声功率100 W,频率40 kHz,超声辅助时间为40 min,水热温度为90℃,LaFeO3起始剂/聚苯乙烯质量比=32∶1)

    Figure  4.  Influence of hydrothermal time on the catalytic performance of LaFeO3/PS (molar ratio of La∶Fe∶CA=1∶1∶2, P=100 W, f=40 kHz, tu=40 min, T=90℃, LaFeO3 initiator/polystyrene mass ratio = 32∶1)

    图  5  LaFeO3起始剂/PS的质量比对LaFeO3/PS催化性能的影响(La∶Fe∶CA的摩尔比=1∶1∶2,超声功率为100 W,频率40 kHz,超声辅助时间40 min,水热温度90℃,水热时间18 h)

    Figure  5.  The effect of LaFeO3 initiator/PS mass ratio on the catalytic performance of LaFeO3/PS (molar ratio of La∶Fe∶CA=1∶1∶2 , P= 100 W, f=40 kHz, tu= 40 min, T=90℃, th=18 h)

    图  6  不同体系下LaFeO3/PS催化光芬顿降解TC去除效率的对比

    Figure  6.  Comparison of LaFeO3/PS Catalyzed Photo-Fenton Degradation TC Removal Efficiency in Different Systems

    图  7  (a) LaFeO3/PS光芬顿反应体系中TC去除率及其矿化度;(b)催化剂可重复利用性测试

    Figure  7.  (a) TC and TOC removal rate of LaFeO3/PS Vis-Fenton degradation system; (b) Catalyst reusability test

    图  8  LaFeO3/PS和PS样品的SEM图像、负载前后实际图像及SEM元素映射图像

    Figure  8.  SEM image of the LaFeO3/PS and PS sample, the actual image before and after loading, and the SEM element mapping images

    图  9  (a) PS和 LaFeO3/PS的EDS光谱图;(b) LaFeO3、LaFeO3/PS和PS的FTIR光谱;

    Figure  9.  (a) EDS spectrogram of PS and LaFeO3/PS; (b) FTIR spectra of LaFeO3, LaFeO3/PS and PS

    图  10  (a) LaFeO3、LaFeO3/PS和PS的XRD;(b) PS,LaFeO3、LaFeO3/PS的紫外-可见漫反射光谱

    Figure  10.  (a) XRD of LaFeO3, LaFeO3/PS and PS; (b) UV-DRS spectra of PS, LaFeO3, LaFeO3/PS

    图  11  LaFeO3和LaFeO3/PS的XPS图谱

    Figure  11.  XPS spectra of LaFeO3/PS and LaFeO3

    图  12  (a)不同捕获剂对光芬顿降解TC的影响;(b) LaFeO3/PS催化光芬顿降解TC的机制图

    Figure  12.  (a) Effects of different trapping agents on degradation of TC by Photo-Fenton; (b)The mechanism diagram of the degradation of TC by LaFeO3/PS catalyzed by Photo-Fenton

    图  13  TC可能的降解路径

    Figure  13.  Possible degradation pathways of TC

    表  1  LaFeO3,LaFeO3/PS和PS材料的物理性质和零电荷点

    Table  1.   Physical properties and zero charge point of LaFeO3, LaFeO3/PS and PS materials

    SampleBET/(m2·g−1)Micropore
    area/(m2·g−1)
    Pore volume/
    (cm3·g−1)
    Average pore
    diameter/nm
    pHpzc
    PS837.414.711.155.746.74
    LaFeO3/PS756.8953.671.025.623.08
    LaFeO30.030.130.000070.703.00
    下载: 导出CSV

    表  2  LaFeO3/PS催化光芬顿降解的TC去除率同近年来报道的方法的比较

    Table  2.   Removal efficiency of TC by LaFeO3/PS catalyzed by Photo-Fenton compared with approaches reported in recent years

    MaterialMethodRemoval efficiencyParametersReference
    Biochar/GeopolymerFenton92.55%pH=5.0,11 h,50 mg/L[41]
    LaFeO3/PersulfateVis-Fenton92.60%pH=4.4,1 h,40 mg/L[42]
    s-MnFe2O4Fenton87.60% (TOCRT=47.50%)pH=3.0,3 h,30 mg/L[43]
    Fe3O4@CUV-Fenton79.25% (TOCRT=43.50%)pH=4.0-5.0,2 h,43.7 mg/L[44]
    CuFeO2/BiocharVis-Fenton97.40% (TOCRT=39.00%)pH=4.0-5.0,2 h,20 mg/L[45]
    LaFeO3/DiaionTM HP21Vis-Fenton90.80% (TOCRT=73.00%)
    73.00% (3rd cycle)
    pH=4.0-5.0,3 h,10 mg/L[18]
    LaFeO3/PSVis-Fenton98.01% (TOCRT=73.25%)
    90.93% (7rd cycle)
    pH=4.75,5 h,16.73 mg/LThis study
    Note: TOCRT−TOC removal rate
    下载: 导出CSV
  • [1] MACHULEK A J, MORAES J E F, VAUTIER-GIONGO C, et al. Abatement of the inhibitory effect of chloride anions on the photo-Fenton process[J]. Environmental Science & Eechnology,2007,41(24):1-7.
    [2] JIAN-YANG H, KE T, HONG J. Improvement of phenol photodegradation efficiency by a combined g-C3N4 /Fe(III)/persulfate system[J]. Chemosphere,2016,148:34-40. doi: 10.1016/j.chemosphere.2016.01.002
    [3] HABIBI-YANGJEH A, MOUSAVI M, NAKATA K. Boosting visible-light photocatalytic performance of g-C3N4/Fe3O4 anchored with CoMoO4 nanoparticles: Novel magnetically recoverable photocatalysts[J]. Journal of Photochemistry and Photobiology A:Chemistry,2019,368:120-136. doi: 10.1016/j.jphotochem.2018.09.026
    [4] 刘庆生, 游拯, 国辉, 等. LaFeO3复合氧化物的制备与红外辐射性能[J]. 中国有色金属学报, 2017, 27(4):781-788.

    LIU Qinsheng, YOU Zheng GUO Hui, et al. Preparation and infrared radiation performance of LaFeO3 composite oxide[J]. Transactions of Nonferrous Metals Society of China,2017,27(4):781-788(in Chinese).
    [5] HONGFANG S, QINGMING L, YANMIN W, et al. Preparation of Lanthanum Ferrite via Ultrasound-assisted Sol–gel Method and Its Photocatalytic Activity[J]. Bulletin of the Chinese Ceramic Society,2018,46(3):402-412.
    [6] JAUHAR S, SINGHAL S. Mn3+ ion in perovskite lattice: a potential Fenton's reagent exhibiting remarkably enhanced degradation of cationic and anionic dyes Generic[J]. Journal of Sol-Gel Science and Technology,2015,75:124-133. doi: 10.1007/s10971-015-3682-8
    [7] DAS S, MAHALINGAM H. Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light[J]. Journal of Environmental Chemical Engineering,2019,7(5):1-8.
    [8] MUHAMMAD H, NING S, FAZAL R, et al. Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons[J]. Applied Catalysis B:Environmental,2018,231:23-33. doi: 10.1016/j.apcatb.2018.02.060
    [9] WANG K, NIU H, CHEN J, et al. Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance[J]. Applied Surface Science,2017,404:138-145. doi: 10.1016/j.apsusc.2017.01.223
    [10] REN X, YANG H, GEN S, et al. Controlled growth of LaFeO3 nanoparticles on reduced graphene oxide for highly efficient photocatalysis[J]. Nanoscale,2016,8(2):752-756. doi: 10.1039/C5NR06338H
    [11] MIHAI O, RAAEN S, De CHEN, et al. Preparation of stable cubic LaFeO3 nanoparticles using carbon nanotubes as templates Generic[J]. Journal of Sol-Gel Science and Technology,2015,75:124-133. doi: 10.1007/s10971-015-3682-8
    [12] TO T, NGA, PHAN, et al. Adsorption and photo-Fenton catalytic degradation of organic dyes over crystalline LaFeO3-doped porous silica Generic [J]. 2018, 8: 36181-36190.
    [13] PHAN, NGA T T, NIKOLOSKI, et al. Enhanced removal of organic using LaFeO3-integrated modified natural zeolites via heterogeneous visible light photo-Fenton degradation[J]. Journal of Environmental Management,2019,233:471-480.
    [14] PENG K, FU L, YANG H, et al. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity - Scientific Reports Generic[J]. Scientific Reports,2016,6:1-10. doi: 10.1038/s41598-016-0001-8
    [15] SADAKANE, MASAHIRO, HORIUCHI, et al. Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum-iron-oxide LaFeO3 with tunable pore diameters: High porosity and photonic property[J]. Journal of Solid State Chemistry,2010,183(6):1365-1371. doi: 10.1016/j.jssc.2010.04.012
    [16] VINCENZOVAIANO, MARIANTONIETTA, MATARANGOLO, et al. UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets Generic[J]. Chemical Engineering Journal,2018,350:703-713. doi: 10.1016/j.cej.2018.06.011
    [17] ZHANG J, LI L, XIAO Z, et al. Hollow Sphere TiO2-ZrO2 Prepared by Self-Assembly with Polystyrene Colloidal Template for Both Photocatalytic Degradation and H2 Evolution from Water Splitting[J]. ACS Sustainable Chemistry & Engineering,2016,4(4):2037-2046.
    [18] ASLı A, ÖZLEM T, BILGIN S E. Deposition of perovskite-type LaFeO3 particles on spherical commercial polystyrene resin: A new platform for enhanced photo-Fenton-catalyzed degradation and simultaneous wastewater purification Generic[J]. Environmental Technology & Innovation,2020,20:1-7.
    [19] XU H, ZEIGER B W, SUSLICK K S. Sonochemical synthesis of nanomaterials[J]. Chemical Society Reviews,2013,42(7):2555-2567. doi: 10.1039/C2CS35282F
    [20] 沈宏芳, 李清明, 王燕民, 等. 超声波辅助溶胶–凝胶法合成纳米铁酸镧及其光催化性能 [J]. 硅酸盐学报, 2018, 46(3): 402-412.

    SHEN Hongfang, LI Qingming, WANG Yanmin, et al. Ultrasonic-assisted sol-gel synthesis of nano-lanthanum ferrite and its photocatalytic properties. 2018, 46(3): 402-412(in Chinese).
    [21] PHAN T T N, NIKOLOSKI A N, BAHRI P A, et al. Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light[J]. Journal of Industrial and Engineering Chemistry,2018,61:53-64. doi: 10.1016/j.jiec.2017.11.046
    [22] THIRUMALAIRAJAN S, GIRIJA K, GANESH I, et al. Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity[J]. Chemical Engineering Journal,2012,209:420-428. doi: 10.1016/j.cej.2012.08.012
    [23] DANG F, KATO K, IMAI H, et al. Growth of BaTiO3 nanoparticles in ethanol-water mixture solvent under an ultrasound-assisted synthesis[J]. Chemical Engineering Journal,2011,170(1):333-337. doi: 10.1016/j.cej.2011.03.076
    [24] FU Z, POPOV V. Parametric study of acoustically-driven microbubble cavitations in a sonochemical reactor[J]. Ultrasonics Sonochemistry,2014,21(1):415-427. doi: 10.1016/j.ultsonch.2013.07.001
    [25] HIDEKI KATO A K. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium Generic[J]. Journal of Physical Chemistry B,2002,106(19):5029-5034. doi: 10.1021/jp0255482
    [26] WU Y, LI X, ZHAO H, et al. 2D/2D FeNi-layered double hydroxide/bimetal-MOFs nanosheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism[J]. Chemosphere,2022,287:132061. doi: 10.1016/j.chemosphere.2021.132061
    [27] TIWARI S, SHARMA N, SAXENA R. On-line speciation of chromium using a modified chelating resin and determination in industrial water samples by flame atomic absorption spectrometry[J]. New Journal of Chemistry,2015,40:1412-1419.
    [28] 刘艳, 高洋, 赵昕, 等. 凝胶型树脂载纳米水合氧化铁复合材料的制备与除As(V)特性[J]. 高分子学报, 2018, 7:939-948.

    LIU Yan, GAO Yang, ZHAO Xin, et al. Preparation of gel-type resin-loaded nano-hydrated iron oxide composite material and its As(V) removal characteristics[J]. Acta Polymerica Sinica,2018,7:939-948(in Chinese).
    [29] SIMSEK E B. Construction of stable perovskite-type LaFeO3 particles on polymeric resin with boosted photocatalytic Fenton-like decaffeination under solar irradiation Generic[J]. Separation and Purification Technology,2020,237:1-42.
    [30] SUN B, ZHOU W, LI H, et al. Synthesis of Particulate Hierarchical Tandem Heterojunctions toward Optimized Photocatalytic Hydrogen Production Generic[J]. Hydrogen Evolution,2018,30(43):1-15.
    [31] XU Y, LI H, SUN B, et al. Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance[J]. Chemical Engineering Journal,2020,379:1-12.
    [32] 吴丹, 詹海鹃, 刘宇凤, 等. LaNixFe(1-x)O3钙钛矿光催化降解碱性品红[J]. 硅酸盐通报, 2019, 38(6):1832-1838.

    WU Dan, ZHAN Haijuan, LIU Yufeng, et al. LaNixFe(1-x)O3 Perovskite Photocatalytic Degradation of Basic Fuchsin[J]. Silicate Bulletin,2019,38(6):1832-1838(in Chinese).
    [33] 郝强, 郝思濛, 牛秀秀, 等. 通过rGO与g-C3N4的π–π堆积作用提高氮化碳光化学氧化能力[J]. 催化学报, 2017, 38(2):278-286. doi: 10.1016/S1872-2067(16)62561-5

    HAO Qiang, HAO Simeng, NIU Xiuxiu, et al. Improving the photochemical oxidation ability of carbon nitride through the π-π stacking interaction of rGO and g-C3N4[J]. Chinese Journal of Catalysis,2017,38(2):278-286(in Chinese). doi: 10.1016/S1872-2067(16)62561-5
    [34] AUGUGLIARO V, LITTER M, PALMISANO L, et al. The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2006,7(4):127-144. doi: 10.1016/j.jphotochemrev.2006.12.001
    [35] POURETEDAL H R, TOFANGSAZI Z, KESHAVARZ M H. Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles Generic[J]. Journal of Alloys and Compounds,2011,513:359-564.
    [36] 段丽媛, 李国强, 张舒婷, 等. 二次等温热缩聚改性对g-C3N4光催化剂性能的影响[J]. 化工进展, 2021, 40(6):3389-3400.

    DUAN Liyuan, LI Guoqiang, ZHANG Shuting, et al. Effect of secondary isothermal thermal polycondensation modification on the performance of g-C3N4 photocatalyst[J]. Chemical Progress,2021,40(6):3389-3400(in Chinese).
    [37] 綦毓文, 魏砾宏, 石冬妮, 等. UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解[J]. 中国环境科学, 2021, 41(3):1162-1171. doi: 10.3969/j.issn.1000-6923.2021.03.019

    QI Yuwen, WEI Lihong, SHI Dongni et al. Preparation of UiO-66/BiVO4 composite photocatalyst and its photolysis of tetracycline[J]. China Environmental Science,2021,41(3):1162-1171(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.019
    [38] 王丹, 赵利霞, 张辉, 等. 二氧化钛光催化产生超氧自由基的形态分布研究[J]. 分析化学, 2017, 45(12):1882-1887. doi: 10.11895/j.issn.0253-3820.171378

    WANG Dan, ZHAO Lixia, ZHANG Hui, et al. Study on the Speciation Distribution of Superoxide Radicals Generated by Titanium Dioxide Photocatalysis[J]. Analytical Chemistry,2017,45(12):1882-1887(in Chinese). doi: 10.11895/j.issn.0253-3820.171378
    [39] LIU D, WANG J, WANG Y, et al. An anion exchange strategy for construction of a novel Bi2SiO5/Bi2MoO6 heterostructure with enhanced photocatalytic performance[J]. Catalysis Science& Technology,2018,08(13):3278-3285.
    [40] WANG S, ZHAO L, HUANG W, et al. Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline[J]. Materials Research Bulletin,2021,135:111161. doi: 10.1016/j.materresbull.2020.111161
    [41] 黄嘉绮, 葛圆圆, 李志礼, 等. 生物炭/地质聚合物复合膜的制备及其对四环素的去除. 化工进展. 2021: 1-12.

    HUANG Jiaqi, GE Yuanyuan, LI Zhili, et al. Preparation of biochar/geopolymer composite membrane and its removal of tetracycline. Chemical progress [J]. 2021: 1-12(in Chinese).
    [42] FENG Q, ZHOU J, LUO W, et al. Photo-Fenton removal of tetracycline hydrochloride using LaFeO3 as a persulfate activator under visible light[J]. Ecotoxicology and Environmental Safety,2020,198:1-16.
    [43] 秦航道, 肖榕, 吴思展, 等. MnFe2O4磁性纳米棒非均相Fenton催化降解水中四环素的研究[J]. 环境科学学报, 2020, 40(11):3913-3921.

    QIN Hangdao, XIAO Rong, WU Sizhan, et al. Study on Heterogeneous Fenton Catalytic Degradation of Tetracycline in Water by MnFe2O4 Magnetic Nanorods[J]. Journal of Environmental Science,2020,40(11):3913-3921(in Chinese).
    [44] KAKAVANDI B, TAKDASTAN A, JAAFARZADEH N, et al. Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method[J]. Journal of Photochemistry and Photobiology A:Chemistry,2016,314:178-188. doi: 10.1016/j.jphotochem.2015.08.008
    [45] XIN S, MA B, LIU G, et al. Enhanced heterogeneous photo-Fenton-like degradation of tetracycline over CuFeO2/biochar catalyst through accelerating electron transfer under visible light[J]. Journal of Environmental Management,2021,285:1-5.
    [46] JIANG J, WANG X, LIU Y, et al. Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: Degradation mechanism, pathways, and products toxicity assessment[J]. Applied Catalysis B:Environmental,2020,278:1-19.
    [47] WANG Y, RAO L, WANG P, et al. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment[J]. Applied Catalysis B:Environmental,2020,262:1-8.
  • 加载中
计量
  • 文章访问数:  175
  • HTML全文浏览量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 录用日期:  2021-12-26
  • 修回日期:  2021-12-16
  • 网络出版日期:  2022-01-18

目录

    /

    返回文章
    返回