Research progress on mechanical properties enhancement of SiO2 aerogels
-
摘要: 随着社会飞速发展,潜伏的火灾隐患对社会安全造成巨大的威胁,使用防火隔热材料可以有效地进行火灾防控。气凝胶具有密度低、导热系数低、孔隙率高等特点,且呈现出优异的防火隔热性能。SiO2气凝胶是气凝胶材料的典型代表,目前在诸多行业被广泛应用。但是目前SiO2气凝胶仍存在力学性能较差的瓶颈问题,极大地限制了工程应用,因此需要通过引入增强体使SiO2气凝胶保持其本身优良特性的同时需增强其力学性能。本文对目前增强SiO2材料的研究现状进行了简述,并着重针对在制备SiO2气凝胶过程中通过优化工艺及添加纳米材料、纤维、成型体来提高力学性能的方法进行了讨论分析。最后提出了SiO2气凝胶未来的研究方向及发展的建议。Abstract: With the rapid development of society, latent fire hazards have a great threat to social security. Fire prevention and control can be effectively carried out by using fire insulation materials. Aerogels have the characteristics of low density, low thermal conductivity, high porosity, and exhibit excellent fire insulation properties. SiO2 aerogel is the typical representative of aerogel materials and widely used in many industries. However, SiO2 aerogel still has the bottleneck problem of poor mechanical properties at present, resulting in greatly limits for the engineering application. Therefore, it is necessary to introduce reinforcements to make SiO2 aerogel maintain its own excellent characteristics and enhance its mechanical properties. In this paper, the current research status of reinforced SiO2 materials is briefly described, then the methods of improving mechanical properties by optimizing the process and adding nanomaterials, fibers, compacts in the preparation of silica aerogels are discussed and analyzed. Finally, this paper proposed the future research direction and development suggestions of SiO2 aerogels .
-
Key words:
- aerogel /
- fireproof and heat insulation /
- strength /
- process optimization /
- nanomaterial /
- fiber /
- SiO2 /
- mechanical properties
-
图 3 双介孔SiO2气凝胶反应机制图:(a) 水解反应;((b)~(d)) 缩合反应[37]
Figure 3. Mechanism of the double mesoporous SiO2 aerogelchemical reactions: (a) Hydrolysis reaction; ((b)-(d)) Condensation reaction[37]
TEOS—Tetraethyl orthosilicate; MTES—Methyl triethoxysilane; MT-0.3—TEOS∶MTES=0.3∶0.7 (Molar ratio); M-0—TEOS∶MTES=0∶1 (Molar ratio); T-1—TEOS∶MTES=1∶0 (Molar ratio)
图 12 添加不同纳米纤维素(CNFs)及表面处理气凝胶的SEM图像:(a) 未改性CNF1;(b) 未改性 CNF2;(c) 改性 CNF1;(d) 改性 CNF2[78]
Figure 12. SEM of aerogels with different nano cellulose (CNFs) and surface treatment: (a) Unmodified CNF1; (b) Unmodified CNF2; (c) Modified CNF1; (d) Modified CNF2[78]
CNF1—Fine S: 94%, Fine P: 4.6%; CNF2—Fine S: 48%, Fine P: 23.5%
Sample V(EtOH)∶V(H2O) V(TMCS)∶M(CTAB) S-14 1∶14 0∶0.1 S-13 2∶13 0∶0.1 S-12 3∶12 0∶0.1 S-11 4∶11 0∶0.1 S-10 5∶10 0∶0.1 S-14 m 1∶14 4∶0.1 S-11 m 1/11 4∶0.1 Notes: EtOH—Absolute ethyl alcohol; TMCS—Trimethylchlorosilane; CTAB—Cetyltrimethyl ammonium bromide; V—Volume, mL; M—Mass, g. 表 2 不同途径增强后气凝胶的热-力性能
Table 2. Thermo-mechanical properties of aerogel after enhancement by different approaches
Enhancement methods Mechanical property Thermal conductivity/(W·(m·K)−1) Silicon source[36] Young’s modulus: 56 kPa 0.0343 Aging[44-45] Young’s modulus: 0.117 MPa 0.027 Heat treatment[52] Maximum stress: 0.764 MPa (40% strain) 0.0278 CNTs[63] Young’s modulus: 201.5 kPa 0.0312 GO[72] Compressive strength: 0.65 MPa 0.018 CNF[78] Compressive strength: 95.4 kPa
Young’s modulus: 122.2 kPa0.023 Quartz fiber[84] Bending strength: 2.34 MPa 0.0335 Glass fiber[85] Young’s modulus: 1393 kPa 0.0213 Ceramic fiber[93] Compressive strength: 0.1082 MPa(10% strain) 0.101 Aramid fiber[94] Young’s modulus: 0.14 MPa 0.0227 Fiber felt[96] Compressive strength: 2.33 MPa
(25% strain)0.0373 Blown foam[100] Young’s modulus: 307 kPa 0.0123 -
[1] DING Y, LIU T, JIANG Y, et al. Flexible fire-resistant and heat-insulating materials fabricated using sodium titanate nanobelts[J]. Materials Today Nano,2022,17:100161. doi: 10.1016/j.mtnano.2021.100161 [2] JELLE B P. Traditional, state-of-the-art and future thermal building insulation materials and solutions-properties, requirements and possibilities. Energy Build[J]. Energy and Buildings,2011,43(10):2549-2563. [3] CUCE E, CUCE P M, WOOD C J, et al. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings[J]. Energy and Buildings,2014,77:28-39. [4] LINHARES T, DE AMORIM M T P, DURÃES L. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications[J]. Journal of Materials Chemistry A,2019,7(40):22768-22802. doi: 10.1039/C9TA04811A [5] GANESAMOORTHY R, VADIVEL V K, KUMAR R, et al. Aerogels for water treatment: A review[J]. Journal of Cleaner Production,2021,329:129713. doi: 10.1016/j.jclepro.2021.129713 [6] ZHAO S Y, STOJANOVIC A, ANGELICA E, et al. Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent- and ion-exchange[J]. Chemical Engineering Journal,2019,381:122421. [7] FIDALGO A, FARINHA J P S, MARTINHO J M G, et al. Nanohybrid silica/polymer aerogels: The combined influence of polymer nanoparticle size and content[J]. Materials & Design,2020,189:108521. [8] SAKKA S. Birth of the sol-gel method: Early history[J]. Journal of Sol-Gel Science and Technology,2022,102(3):478-481. doi: 10.1007/s10971-021-05640-9 [9] HÜSING N, SCHUBERT U. Aerogele-luftige materialien: Chemie, struktur and eigenschaften[J]. Angewandte Chemie,1998,110(1-2):22-47. doi: 10.1002/(SICI)1521-3757(19980116)110:1/2<22::AID-ANGE22>3.0.CO;2-9 [10] PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews,2002,102(11):4243-4266. doi: 10.1021/cr0101306 [11] ZIEGLER C, WOLF A, LIU W, et al. Modern inorganic aerogels[J]. Angewandte Chemie,2017,56(43):13200-13221. doi: 10.1002/anie.201611552 [12] YE X, SHANG S S, ZHAO Y F, et al. Ultra-efficient adsorption of copper ions in chitosan-montmorillonite compo-site aerogel at wastewater treatment[J]. Cellulose,2021,28(11):7201-7212. [13] ZHAO J Q, LU C H, HE X, et al. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery[J]. ACS Applied Materials & Interfaces,2015,7(4):2607-2615. [14] HU E L, WU X B, SHANG S M, et al. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst[J]. Jour-nal of Cleaner Production,2016,112:4710-4718. doi: 10.1016/j.jclepro.2015.06.127 [15] WU K D, DONG W, PAN Y K, et al. Lightweight and flexible phenolic aerogels with three-dimensional foam reinforcement for acoustic and thermal insulation[J]. Industrial & Engineering Chemistry Research,2021,60(3):1241-1249. [16] GARCÍA-GONZÁLEZ C A, JIN M, GERTH J, et al. Polysaccharide-based aerogel microspheres for oral drug delivery[J]. Carbohydrate Polymers,2015,117:797-806. [17] ZHANG E S, ZHANG W L, LYU T, et al. Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400°C[J]. ACS Applied Materials & Interfaces,2021,13(17):20548-20558. [18] XU C C, WANG H L, SONG J N, et al. Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity[J]. Journal of the American Ceramic Society,2018,101(4):1677-1683. doi: 10.1111/jace.15301 [19] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741. [20] MERMER N K, YILMAZ M S, OZDEMIR O D, et al. The synthesis of silica-based aerogel from gold mine waste for thermal insulation[J]. Journal of Thermal Analysis and Calorimetry,2017,129(3):1807-1812. doi: 10.1007/s10973-017-6371-8 [21] ULLMANN K, ÁDÁM P, SINKÓ K. Chemical tailoring of porous aluminum oxide xerogels[J]. Journal of Non-Crystalline Solids,2018,499:394-400. [22] MACÍAS C, HARO M, PARRA J B, et al. Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels[J]. Carbon,2013,63:487-497. doi: 10.1016/j.carbon.2013.07.024 [23] OMRANPOUR H, DOURBASH A, MOTAHARI S. Mechanical properties improvement of silica aerogel through aging: Role of solvent type, time and temperature[J]. Journal of Non-Crystalline Solids,2014,1593:298-302. [24] PONS A, CASAS L, ESTOP E, et al. A new route to aerogels: Monolithic silica cryogels[J]. Journal of Non-Crystalline Solids,2012,358(3):461-469. doi: 10.1016/j.jnoncrysol.2011.10.031 [25] RATTI C. Hot air and freeze-drying of high-value foods: A review[J]. Journal of Food Engineering,2001,49(4):311-319. doi: 10.1016/S0260-8774(00)00228-4 [26] ZHANG Z D, SCHERER G W. Supercritical drying of cementitious materials[J]. Cement and Concrete Research,2017,99:137-154. doi: 10.1016/j.cemconres.2017.05.005 [27] DURÃES L, OCHOA M, ROCHA N, et al. Effect of the drying conditions on the microstructure of silica based xerogels and aerogels[J]. Journal of Nanoscience and Nanotechnology,2012,12(8):6828-6834. doi: 10.1166/jnn.2012.4560 [28] 任家飞, 黄星, 李齐方, 等. 增强体复合SiO2气凝胶的研究进展[J]. 化学通报, 2021, 84(4):305-312.REN Jiafei, HUANG Xing, LI Qifang, et al. Research progress in reinforcement composite silica aerogel[J]. Chemistry,2021,84(4):305-312(in Chinese). [29] CAI H F, JIANG Y G, FENG J, et al. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol[J]. Materials & Design,2020,191:108640. [30] SACHITHANADAM M, JOSHI S C. High strain recovery with improved mechanical properties of gelatin-silica aerogel composites post-binding treatment[J]. Journal of Materials Science,2014,49(1):163-179. doi: 10.1007/s10853-013-7690-1 [31] 王妮, 任洪波. 不同硅源制备二氧化硅气凝胶的研究进展[J]. 材料导报, 2014, 28(1):42-45, 58.WANG Ni, REN Hongbo. Investigation process of silica aerogels synthesized by different types of silica recourses[J]. Materials Reports,2014,28(1):42-45, 58(in Chinese). [32] 马利国, 孙艳荣, 李东来, 等. 二氧化硅气凝胶硅源选择的研究进展[J]. 无机盐工业, 2020, 52(8): 11-16.MA Liguo, SUN Yanrong, LI Donglai, et al. Research progress on silicon source selection of silica aerogel[J]. Inorganic Chemicals Industry, 2020, 52(8): 11-16(in Chinses). [33] SHAO Z D, LUO F Z, CHENG X, et al. Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying[J]. Materials Chemistry and Physics,2013,141(1):570-575. doi: 10.1016/j.matchemphys.2013.05.064 [34] SINKÓ K. Influence of chemical conditions on the nanoporous structure of silicate aerogels[J]. Materials,2010,3(1):704-740. doi: 10.3390/ma3010704 [35] HE S, CHEN X F. Flexible silica aerogel based on methyltrimethoxysilane with improved mechanical property[J]. Journal of Non-Crystalline Solids,2017,463:6-11. doi: 10.1016/j.jnoncrysol.2017.02.014 [36] ZHAO Y, LI Y, ZHANG R B. Silica aerogels having high flexibility and hydrophobicity prepared by sol-gel method[J]. Ceramics International,2018,44(17):21262-21268. doi: 10.1016/j.ceramint.2018.08.173 [37] ZHANG Y, XIANG L, SHEN Q Q, et al. Rapid synthesis of dual-mesoporous silica aerogel with excellent adsorption capacity and ultra-low thermal conductivity[J]. Journal of Non-Crystalline Solids,2020,555(1-7):120547. [38] SMITHA S, SHAJESH P, ARAVIND P R, et al. Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels[J]. Microporous and Mesoporous Materials,2006,91(1-3):286-292. doi: 10.1016/j.micromeso.2005.11.051 [39] HÆREID S, DAHLE M, LIMA S, et al. Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions[J]. Journal of Non-Crystalline Solids,1995,186:96-103. doi: 10.1016/0022-3093(95)00039-9 [40] EINARSRUD M A, BRITT KIRKEDELEN M, NILSEN E, et al. Structural development of silica gels aged in TEOS[J]. Journal of Non-Crystalline Solids,1998,231(1-2):10-16. doi: 10.1016/S0022-3093(98)00405-0 [41] REICHENAUER G. Thermal aging of silica gels in water[J]. Journal of Non-Crystalline Solids,2004,350:189-195. doi: 10.1016/j.jnoncrysol.2004.07.073 [42] 何方, 赵红雨, 王改民, 等. 常温下老化介质对硅石气凝胶的影响[J]. 陶瓷研究, 2008,23(2):75-76. doi: 10.3969/j.issn.1000-9892.2008.02.024HE Fang, ZHAO Hongyu, WANG Gaimin, et al. At room temperature aging medium on the impact of silica aerogel[J]. Ceramic Studies Journal,2008,23(2):75-76(in Chinese). doi: 10.3969/j.issn.1000-9892.2008.02.024 [43] OMRANPOUR H, MOTAHARI S. Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature[J]. Journal of Non-Crystalline Solids,2013,379:7-11. doi: 10.1016/j.jnoncrysol.2013.07.025 [44] ISWAR S, MALFAIT W J, BALOG S, et al. Effect of aging on silica aerogel properties[J]. Microporous and Mesoporous Materials,2016,241:293-302. [45] ISWAR S, GALMARINI S, BONANOMI L, et al. Dense and strong, but superinsulating silica aerogel[J]. Acta Materialia,2021,213:116959. doi: 10.1016/j.actamat.2021.116959 [46] SIVARAMAN D, ZHAO S Y, ISWAR S, et al. Aerogel spring-back correlates with strain recovery: Effect of silica concentration and aging[J]. Advanced Engineering Materials,2021,23(10):2100376. doi: 10.1002/adem.202100376 [47] LAKATOS Á, CSARNOVICS I. Influence of thermal annealing on structural properties of silica aerogel super insulation material[J]. Journal of Thermal Analysis and Calorimetry,2020,142(1):321-329. doi: 10.1007/s10973-019-09043-5 [48] GORDIENKO M, BELOUS D, TYRTYSHNIKOV A, et al. Prediction of structure changes of organic-silica aerogels during pyrolysis[J]. Elsevier,2017,40:181-186. [49] HE S, HUANG Y J, CHEN G N, et al. Effect of heat treatment on hydrophobic silica aerogel[J]. Journal of Hazardous Materials,2019,362:294-302. [50] AMEEN K B, RAJASEKAR K, RAJASEKHARAN T, et al. The effect of heat-treatment on the physico-chemical properties of silica aerogel prepared by sub-critical drying technique[J]. Journal of Sol-Gel Science and Technology,2008,45(1):9-15. doi: 10.1007/s10971-007-1630-y [51] LUCAS E M, DOESCHER M S, EBENSTEIN D M, et al. Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids[J]. Journal of Non-Crystalline Solids,2004,350:244-252. doi: 10.1016/j.jnoncrysol.2004.07.074 [52] YE X L, CHEN Z F, LI M, et al. Effect of heat treatment temperature on melamine sponge reinforced silica aerogel[J]. Materials Research Express,2019,6(12):125517. doi: 10.1088/2053-1591/ab590a [53] 郭建业, 赵英民, 张丽娟, 等. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(S1):202-205.GUO Jianye, ZHAO Yingmin, ZHANG Lijuan, et al. Study on properties of high-temperature reusable silica aerogel composites[J]. Materials Reports,2019,33(S1):202-205(in Chinese). [54] 赵洪凯, 邵凯, 刘威. 纳米级增强体复合硅气凝胶的研究进展[J]. 无机盐工业, 2020, 52(4): 7-11.ZHAO Hongkai, SHAO Kai, LIU Wei. Research progress of nano-sized reinforced silica aerogel composites[J]. Inorganic Chemicals Industry, 2020, 52(4): 7-11(in Chinese). [55] ZIMMERMANN M V G, ZATTERA A J. Silica aerogel reinforced with cellulose nanofibers[J]. Journal of Porous Materials,2021,28(5):1325-1333. doi: 10.1007/s10934-021-01080-6 [56] SHI J F, LU L B, GUO W T, et al. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels[J]. Carbohydrate Polymers,2013,98(1):282-289. doi: 10.1016/j.carbpol.2013.05.082 [57] LAMY-MENDES A, SILVA R F, DURÃES L. Advances in carbon nanostructure-silica aerogel composites: a review[J]. Journal of Materials Chemistry A,2018,6(4):1340-1369. doi: 10.1039/C7TA08959G [58] CAI J E, LIU S L, FENG J A, et al. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel[J]. Angewandte Chemie,2012,124(9):2118-2121. doi: 10.1002/ange.201105730 [59] DE VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453 [60] SHOKRIEH M M, RAFIEE R. A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites[J]. Mechanics of Composite Materials,2010,46(2):155-172. doi: 10.1007/s11029-010-9135-0 [61] 吴会军, 彭程, 丁云飞, 等. 碳纳米管增强气凝胶隔热复合材料的性能研究[J]. 广州大学学报(自然科学版), 2012, 11(6):32-37.WU Huijun, PENG Cheng, DING Yunfei, et al. Characterization of carbon nanotubes reinforced SiO2 aerogels composites for thermal insulation[J]. Journal of Guangzhou University (Natural Science Edition),2012,11(6):32-37(in Chinese). [62] PIÑERO M, DEL MAR MESA-DÍAZ M, DE LOSSANTOS D, et al. Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation[J]. Journal of Sol-Gel Science and Technology,2018,86(2):391-399. doi: 10.1007/s10971-018-4645-7 [63] LAMY-MENDES A, GIRÃO A V, SILVA R F, et al. Polysilsesquioxane-based silica aerogel monoliths with embedded CNTs[J]. Microporous and Mesoporous Materials,2019,288:109575. doi: 10.1016/j.micromeso.2019.109575 [64] SUN T, ZHUO Q, LIU X, et al. Hydrophobic silica aerogel reinforced with carbon nanotube for oils removal[J]. Journal of Porous Materials,2014,21(6):967-973. doi: 10.1007/s10934-014-9845-0 [65] CHANG D W, BAEK J B. Eco-friendly synthesis of graphene nanoplatelets[J]. Journal of Materials Che-mistry, A,2016,4(40):15281-15293. doi: 10.1039/C6TA06463A [66] ZHAO J, WANG Z Y, WHITE J C, et al. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation[J]. Environmental Science & Technology,2014,48(17):9995-10009. [67] LIANG X Q, WANG Y, ZHENG H Y, et al. X-ray absorption spectroscopy study on the thermal and hydrazine reduction of graphene oxide[J]. Journal of Electron Spectroscopy and Related Phenomena,2014,196:89-93. doi: 10.1016/j.elspec.2013.10.011 [68] COMPTON O C, NGUYEN S B T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small,2010,6(6):711-723. doi: 10.1002/smll.200901934 [69] ASLAM M, KALYAR M A, RAZA Z A. Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets[J]. Materials Research Express,2016,3(10):105036. doi: 10.1088/2053-1591/3/10/105036 [70] DERVIN S, LANG Y, PEROVA T, et al. Graphene oxide reinforced high surface area silica aerogels[J]. Journal of Non-Crystalline Solids,2017,465:31-38. doi: 10.1016/j.jnoncrysol.2017.03.030 [71] LEI Y F, HU Z J, CAO B, et al. Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide[J]. Materials Chemistry and Physics,2017,187:183-190. doi: 10.1016/j.matchemphys.2016.11.064 [72] LIU H L, HE X A, LI H Y, et al. Novel GO/silica composite aerogels with enhanced mechanical and thermal insulation properties prepared at ambient pressure[J]. Ferroelectrics,2018,528(1):15-21. doi: 10.1080/00150193.2018.1448192 [73] LAMY-MENDES A, MALFAIT W J, SADE-GHPOUR A, et al. Influence of 1D and 2D carbon nanostructures in silica-based aerogels[J]. Carbon,2021,180:146-162. doi: 10.1016/j.carbon.2021.05.004 [74] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: Chemistry, self-assembly, and applications[J]. Chemical Reviews,2010,110(6):3479-3500. [75] VAN DE VEN T G M, SHEIKHI A. Hairy cellulose nanocrystalloids: A novel class of nanocellulose[J]. Nanoscale,2016,8(33):15101-15114. doi: 10.1039/C6NR01570K [76] PLAPPERT S F, NEDELEC J M, RENNHOFER H, et al. Strain hardening and pore size harmonization by uniaxial densification: A facile approach toward superinsulating aerogels from nematic nanofibrillated 2, 3-dicarboxyl cellulose[J]. Chemistry of Materials,2017,29(16):6630-6641. doi: 10.1021/acs.chemmater.7b00787 [77] JIANG F, HU S X, HSIEH Y L. Aqueous synthesis of compressible and thermally stable cellulose nanofibril-silica aerogel for CO2 adsorption[J]. ACS Applied Nano Materials,2018,1(12):6701-6710. doi: 10.1021/acsanm.8b01515 [78] CHEN Y X, SEPAHVAND S, GAUVIN F, et al. One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor[J]. Construction and Building Materials,2021,293:123289. doi: 10.1016/j.conbuildmat.2021.123289 [79] 付菁菁, 何春霞, 陈永生, 等. 纳米纤维素增强SiO2气凝胶力学性能与微观结构[J]. 复合材料学报, 2018, 35(9):2593-2599.FU Jingjing, HE Chunxia, CHEN Yongsheng, et al. Mechanical properties and microstructure of SiO2 aerogel reinforced with cellulose nanofibrils[J]. Acta Materiae Compositae Sinica,2018,35(9):2593-2599(in Chinese). [80] ROCHA H, LAFONT U, SEMPRIMOSCHNIG C. Environmental testing and characterization of fibre reinforced silica aerogel materials for Mars exploration[J]. Acta Astronautica,2019,165:9-16. doi: 10.1016/j.actaastro.2019.07.030 [81] MIRKHALAF S M, EGGELS E H,VAN BEURDEN T J H, et al. A finite element based orientation averaging method for predicting elastic properties of short fiber reinforced composites[J]. Composites Part B: Engineering,2020,202:108388. doi: 10.1016/j.compositesb.2020.108388 [82] DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology,2008,199(1-3):10-26. doi: 10.1016/j.jmatprotec.2007.10.060 [83] YU H J, JIANG Y T, LU Y F, et al. Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying[J]. Journal of Non-Crystalline Solids,2019,505:79-86. doi: 10.1016/j.jnoncrysol.2018.10.039 [84] 王衍飞, 张长瑞, 冯坚, 等. SiO2气凝胶/短切石英纤维多孔骨架复合材料的制备与性能[J]. 硅酸盐学报, 2009, 37(2):234-237.WANG Yanfei, ZHANG Changrui, FENG Jian, et al. Fabrication and properties of SiO2-aerogel/short silica fiber porous skeleton composite[J]. Journal of the Chinese Ceramic Society,2009,37(2):234-237(in Chinese). [85] ZHOU T, CHENG X D, PAN Y L, et al. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying[J]. Applied Surface Science,2018,437:321-328. doi: 10.1016/j.apsusc.2017.12.146 [86] 马佳, 沈晓冬, 崔升, 等. 纤维增强二氧化硅气凝胶复合材料的制备和低温性能[J]. 材料导报, 2015, 29(20):43-46,63.MA Jia, SHEN Xiaodong, CUI Sheng, et al. Preparation and low-temperature properties of fiber reinforced SiO2 aerogel composites[J]. Materials Reports,2015,29(20):43-46,63(in Chinese). [87] HUNG W C, HORNG R S, SHIA R G. Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites[J]. Journal of Sol-Gel Science and Technology,2021,97(2):414-421. doi: 10.1007/s10971-020-05444-3 [88] TIAN J Q, SHAFI S, TAN H J, et al. Mechanical and thermal-insulating performance of silica aerogel enhanced jointly with glass fiber and fumed silica by a facile compressing technique[J]. Chemical Physics Letters,2020,739:136950. doi: 10.1016/j.cplett.2019.136950 [89] 王小雅, 曹云峰. 新型纤维材料—陶瓷纤维[J]. 纤维素科学与技术, 2012, 20(1):79-85. doi: 10.3969/j.issn.1004-8405.2012.01.012WANG X Y, CAO Y F. Ceramic fiber as a new material[J]. Journal of Cellulose Science and Technology,2012,20(1):79-85(in Chinese). doi: 10.3969/j.issn.1004-8405.2012.01.012 [90] 高庆福, 冯坚, 张长瑞, 等. 陶瓷纤维增强氧化硅气凝胶隔热复合材料的力学性能[J]. 硅酸盐学报, 2009, 37(1):1-5. doi: 10.14062/j.issn.0454-5648.2009.01.010GAO Qingfu, FENG Jian, ZHANG Changrui, et al. Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites[J]. Journal of the Chinese Ceramic Society,2009,37(1):1-5(in Chinese). doi: 10.14062/j.issn.0454-5648.2009.01.010 [91] YANG X G, SUN Y T, SHI D Q, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science and Engineering: A,2011,528(13-14):4830-4836. [92] 米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):635-643. doi: 10.13801/j.cnki.fhclxb.2014.03.015MI Chunhu, JIANG Yonggang, SHI Duoqi, et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Materiae Compositae Sinica,2014,31(3):635-643(in Chinese). doi: 10.13801/j.cnki.fhclxb.2014.03.015 [93] DU D X, JIANG Y G, FENG J Z, et al. Facile synthesis of silica aerogel composites via ambient-pressure drying without surface modification or solvent exchange[J]. Vacuum,2020,173:109117. doi: 10.1016/j.vacuum.2019.109117 [94] LI Z, CHENG X D, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing,2016,84:316-325. doi: 10.1016/j.compositesa.2016.02.014 [95] ALMEIDA C M R, GHICA M E, RAMALHO A L, et al. Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments[J]. Journal of Materials Science,2021,56(24):13604-13619. doi: 10.1007/s10853-021-06142-3 [96] YI Z H, YAN L W, ZHANG T, et al. Thermal insulated and mechanical enhanced silica aerogel nanocomposite with in-situ growth of mullite whisker on the surface of aluminum silicate fiber[J]. Composites Part A: Applied Science and Manufacturing,2020,136:105968. doi: 10.1016/j.compositesa.2020.105968 [97] 罗丹, 龙丽娟, 秦舒浩, 等. 碳纤毡和硅酸铝纤维增强二氧化硅气凝胶的制备及性能[J]. 广州化学, 2022, 47(3):46-51. doi: 10.16560/j.cnki.gzhx.20220312LUO Dan, LONG Lijuan, QIN Shuhao, et al. Preparation and properties of silica aerogel reinforced with different fibers[J]. Guangzhou Chemistry,2022,47(3):46-51(in Chinese). doi: 10.16560/j.cnki.gzhx.20220312 [98] 张丽娟, 王洋, 李文静, 等. 耐高温透波气凝胶复合材料性能[J]. 宇航材料工艺, 2015, 45(4):47-50, 53.ZHANG Lijuan, WANG Yang, LI Wenjing, et al. Properties of high temperature resistant wave-transparent aerogels composites[J]. Aerospace Materials & Technology,2015,45(4):47-50, 53(in Chinese). [99] SHAFI S, ZHAO Y P. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation[J]. Journal of Porous Materials,2019,27(2):495-502. [100] MERILLAS B, LAMY-MENDES A, VILLAFAÑE F, et al. Polyurethane foam scaffold for silica aerogels: effect of cell size on the mechanical properties and thermal insulation[J]. Materials Today Chemistry,2022,26:101257. doi: 10.1016/j.mtchem.2022.101257 [101] SONG Z H, ZHAO Y F, YUAN M, et al. Thermal insulation and moisture resistance of high-performance silicon aerogel composite foam ceramic and foam glass[J]. Advanced Engineering Materials,2022,24(8):2101508. doi: 10.1002/adem.202101508 [102] 李婧, 黄洁, 章伊婷, 等. 负载相变微胶囊的三聚氰胺/二氧化硅柔性气凝胶[J]. 高分子材料科学与工程, 2022, 38(8):122-128. doi: 10.16865/j.cnki.1000-7555.2022.0172LI Jing, HUANG Jie, ZHANG Yiting, et al. Structure and properties of melamine/silicon dioxide flexible aerogels loaded with phase transition microcapsules[J]. Polymer Materials Science & Engineering,2022,38(8):122-128(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0172 -