留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化硅气凝胶力学性能增强研究进展

展望 时钒 李丽霞 陈乐 陈明毅 孔庆红 张庆武

展望, 时钒, 李丽霞, 等. 二氧化硅气凝胶力学性能增强研究进展[J]. 复合材料学报, 2023, 41(0): 1-14
引用本文: 展望, 时钒, 李丽霞, 等. 二氧化硅气凝胶力学性能增强研究进展[J]. 复合材料学报, 2023, 41(0): 1-14
Wang ZHAN, fan SHI, Lixia LI, Le CHEN, Mingyi CHEN, Qinghong KONG, Qingwu ZHANG. Research progress on mechanical properties enhancement of silica aerogels[J]. Acta Materiae Compositae Sinica.
Citation: Wang ZHAN, fan SHI, Lixia LI, Le CHEN, Mingyi CHEN, Qinghong KONG, Qingwu ZHANG. Research progress on mechanical properties enhancement of silica aerogels[J]. Acta Materiae Compositae Sinica.

二氧化硅气凝胶力学性能增强研究进展

基金项目: 国家自然科学基金项目(52004131); 国家自然科学基金项目(52204213); 江苏大学应急管理学院大学生科研训练培育项目(JG-03-07);
详细信息
    通讯作者:

    李丽霞,博士研究生,副教授,硕士生导师,研究方向为功能材料的合成 E-mail:qingpipa@ujs.edu.cn

  • 中图分类号: TB332

Research progress on mechanical properties enhancement of silica aerogels

Funds: National Natural Science Foundation of China(No.52004131);National Natural Science Foundation of China (No.52204213);The Students Scientific Research Training Program of College of Emergency Management of Jiangsu University(JG-03-07)
  • 摘要:   目的  随着社会飞速发展,潜伏的火灾危险对社会安全造成巨大的威胁。火灾会造成巨大的财产损失和人员伤亡,使用防火隔热材料可以有效地进行火灾防控,将火灾造成的社会影响降至最低。气凝胶具有密度低、导热系数低、孔隙率高等特点,表现出优异的防火隔热性能。二氧化硅气凝胶是气凝胶材料的典型代表,目前在城市建筑、生物科技、环境治理、能源储存、航空航天行业被广泛应用。但是力学性能较差成为限制二氧化硅气凝胶工程化应用的瓶颈问题,因此需要通过物理添加、化学改性等手段使二氧化硅气凝胶保持低导热系数的同时提升力学性能。本文系统的综述了目前国内外二氧化硅气凝胶力学性能增强研究进展情况。  方法  通过检索国内外相关文献,对目前增强二氧化硅气凝胶材料的研究现状进行了简述。主要针对在制备二氧化硅气凝胶过程中通过优化工艺以及添加纤维、纳米材料、成型体四种方法提高力学性能的方法进行了讨论分析。工艺优化方面主要针对多种硅源复配、老化工艺、高温热处理方面三个方面进行了详细阐述。引入增强体方面的研究中列举了碳纳米管、氧化石墨烯、纳米纤维素三种纳米材料;石英纤维、玻璃纤维、陶瓷纤维、芳纶纤维四种常见纤维;以及纤维毡、多孔骨架二种成型预制体。最后提出了二氧化硅气凝胶未来的研究方向及发展的建议。  结果  通过讨论分析发现,制备工艺优化对二氧化硅气凝胶骨架进行增强可以减少杂质,制备工艺简单,同时避免了副产物的生成,但存在制备周期长,对环境污染大等一系列问题。纳米材料可以在纳米尺寸范围内增强二氧化硅凝胶孔隙结构,从而有效地提高气凝胶的力学性能,但纳米材料易氧化,对于储存要求比较高,且价格昂贵无法进行大规模的工程应用。因此使用纤维等材料进行物理加强是简单可行的技术手段,但是凝胶颗粒在纤维表面不容易分散均匀,导致凝胶微小颗粒无法与光滑的纤维牢固的结合在一起,对于力学性能的提升效果有限。因此需要使用多种手段结合的方式来增强二氧化硅气凝胶的力学性能。  结论  目前气凝胶材料在各个行业有着大量需求, 且发展迅速,但气凝胶较差的力学性能仍成为不可忽视的问题,在未来的研究中应重点关注以下几个方面:首先应根据不同前驱体的特性以及老化、热处理工艺对气凝胶性能的影响进行工艺优化。以使用多种纤维混合进行增强为主,同时结合纳米材料改性、接枝技术进行辅助增强。利用仿生结构(如贝壳的珍珠母层等)来增强气凝胶的力学性能也属于一种解决方法。在气凝胶多功能化方面,还应关注疏水、隔音以及其它特殊性能,如自愈性、形状记忆等,进一步拓展二氧化硅气凝胶在工程上的应用。

     

  • 图  1  SiO2气凝胶力学性能增强方法

    Figure  1.  Mechanical property enhancement methods of silica aerogel

    图  2  柔性SiO2气凝胶压缩结果[35]

    Figure  2.  Compression result of flexible SiO2 aerogel[35]

    图  3  双介孔SiO2气凝胶反应机制图: (a)水解反应; (b-d)缩合反应[37]

    Figure  3.  Mechanism of the double mesoporous SiO2 aerogelchemical reactions: (a) the hydrolysis reaction; (b-d) the condensation reaction[37]

    图  4  不同老化条件下制备的SiO2气凝胶[44]

    Figure  4.  The silica aerogels prepared under different aging conditions[44]

    图  5  二氧化硅气凝胶刚度及密度随时间变化规律[45]

    Figure  5.  The variation of stiffness and density of silica aerogel with time[45]

    图  6  气凝胶颗粒转化过程的强化模型及不同温度热处理后三聚氰胺(MS)/SiO2气凝胶SEM图[52]

    Figure  6.  Strengthen model of aerogel particles transformation process and SEM images of melamine /silica aerogels prepared by heat treatment at different temperatures[52]

    图  7  不同温度处理后气凝胶SEM图[53]

    Figure  7.  SEM images of aerogel processed at different temperatures[53]

    图  8  不同碳纳米管含量CNTs/SiO2气凝胶图[62]

    Figure  8.  Images of CNTs/silica aerogels with different CNTs content[62]

    CNTs—Carbon nanotubes

    图  9  CNTS/SiO2气凝胶的制备流程及SEM图[63]

    Figure  9.  The preparation process and SEM diagram of CNTs/silica aerogel[63]

    图  10  氧化石墨烯/SiO2气凝胶制备流程图[70]

    Figure  10.  Preparation process of GO/silica aerogels[70]

    图  11  (a) Si/GO复合气凝胶形成的示意图;(b) Si/GO-5.0复合材料HRTEM图[71]Fig.11(a) Schematic illustration of the formation of Si/GO composite aerogels; (b)The HRTEM diagrams of Si/GO-5.0 composites[71]

    图  12  添加不同CNFs及表面处理气凝胶的扫描电镜:(a)未改性5 mLCNF1; (b)未改性5 mLCNF2; (c) 改性5 mLCNF1; (d) 改性5 mLCNF2[78]

    Figure  12.  SEM of aerogel with different CNFs and surface treatment: (a) Unmodified 5 mLCNF1; (b) Unmodified 5 mLCNF2; (c) Modified 5 mLCNF1; (d) Modified 5 mLCNF2[78]

    图  13  纤维素/二氧化硅气凝胶应力-应变曲线[78]

    Figure  13.  Stress-strain curve of CNF/SiO2 aerogels[78]

    图  14  800oC时QF/ASA复合材料的SEM图像[83]

    Figure  14.  SEM images of QF/ASA composite at 800oC[83]

    图  15  (a)石英纤维/SiO2气凝胶的SEM图; (b)纤维搭接处SEM图[84]

    Figure  15.  The SEM image of quartz fiber/silica aerogels;(b) SEM image of joining of silica fibers[84]

    图  16  玻璃纤维增强SiO2气凝胶制备工艺[87]

    Figure  16.  Preparation technology of GF reinforced SiO2 aerogel[87]

    图  17  SiO2气凝胶与气相SiO2比例对二氧化硅复合材料导热系数和弯曲模量的影响[88]

    Figure  17.  Influence of the ratio of silica aerogel to the fumed silica on the thermal conductivity and flexural modulus of the silica composites[88]

    图  18  纤维的分层结构分布[94]

    Figure  18.  The layered structure of the fiber distribution[94]

    图  19  ASF/MW/ SiO2气凝胶制备流程图[96]

    Figure  19.  The preparation process of ASF/MW/silica aerogels[96]

    ASF—alumina silicate fiber felt; MW—mullite whisker

    图  20  (a)碳纤维毡增强SiO2气凝胶SEM图; (b)硅酸铝纤维毡增强 SiO2气凝胶SEM图[97]

    Figure  20.  (a) The SEM images of carbon fiber felt reinforced SiO2 aerogels; (b) The SEM images of aluminum silicate fiber felt reinforced SiO2 aerogel [97]

    图  21  不同温度下石英纤维/SiO2气凝胶的拉伸强度和断裂伸长率[98]

    Figure  21.  Tensile strength and elongation at break of quartz fiber/silica aerogels at different temperatures[98]

    图  22  玻璃纤维/SiO2气凝胶压缩实验: (a)压缩前; (b) 压缩达到60%应变; (c)压缩后完全恢复[99]

    Figure  22.  Compression test of GF/silica aerogels: (a)Before compression; (b)Compression up to 60% strain; (c)Recovered fully after compression[99]

    图  23  网状聚氨酯泡沫及泡孔结构显微照片[100]

    Figure  23.  Reticulated polyurethane foams and cellular structure micrographs[100]

    图  24  泡沫陶瓷/SiO2气凝胶和泡沫玻璃/SiO2气凝胶结构示意图[101]

    Figure  24.  Demonstration diagram of ceramic foam/ silica aerogel and foam glass/silica aerogels structure[101]

    表  1  SiO2气凝胶样品的初始组成[35]

    Table  1.   Starting compositions of SiO2 aerogel samples[35]

    NO.EtOH/H2O (mL)TMCS (mL)/CTAB(g)
    S-141/140/0.1
    S-132/130/0.1
    S-123/120/0.1
    S-114/110/0.1
    S-105/100/0.1
    S-14 m1/144/0.1
    S-11 m1/114/0.1
    下载: 导出CSV

    表  2  不同途径增强后气凝胶的热-力性能

    Table  2.   Thermo-mechanical properties of aerogel after enhancement by different approaches

    Enhancement methodsMechanical propertyThermal conductivity/(W·(m·K)−1)
    Silicon source[36]Young’s modulus: 56 kPa0.0343
    Aging[44, 45]Young’s modulus: 0.117 MPa0.027
    Heat treatment[52]Maximum stress: 0.764 MPa(40% strain)0.0278
    CNTs[63]Young’s modulus: 201.5 kPa0.0312
    GO[72]Compressive strength: 0.65 MPa0.018
    CNF[78]Compressive strength: 95.4 kPaYoung’s modulus:122.2 kPa0.023
    Quartz fiber[84]Bending strength: 2.34 MPa0.0335
    Glass fiber[85]Young’s modulus: 1393 kPa0.0213
    Ceramic fiber[93]Compressive strength: 0.1082 MPa(10% strain)0.101
    Aramid fiber[94]Young’s modulus: 0.14 MPa0.0227
    Fiber felt[96]Compressive strength: 2.33 MPa(25% strain)0.0373
    Blown foam[100]Young’s modulus: 307 kPa0.0123
    下载: 导出CSV
  • [1] DING Y, LIU T, JIANG Y, et al. Flexible fire-resistant and heat-insulating materials fabricated using sodium titanate nanobelts[J]. Materials Today Nano,2022,17:100161. doi: 10.1016/j.mtnano.2021.100161
    [2] JELLE B P. Traditional, state-of-the-art and future thermal building insulation materials and solutions-Properties, requirements and possibilities[J]. Energy & Buildings,2011,43(10):2549-2563.
    [3] CUCE E, CUCE P M, WOOD C J, et al. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings[J]. Energy & Buildings,2014,77:28-39.
    [4] LINHARES T, AMORIM M T P D, DURãES L. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications[J]. Journal of Materials Chemistry A,2019,7(40):22768-22802. doi: 10.1039/C9TA04811A
    [5] GANESAMOORTHY R, VADIVEL V K, KUMAR R, et al. Aerogels for water treatment: A review[J]. Journal of Cleaner Production,2021,329:129713. doi: 10.1016/j.jclepro.2021.129713
    [6] ZHAO S, STOJANOVIC A, ANGELICA E, et al. Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent- and ion-exchange[J]. Chemical Engineering Journal,2019,381:122421.
    [7] FIDALGO A, FARINHA J P S, MARTINHO J M G, et al. Nanohybrid silica/polymer aerogels: The combined influence of polymer nano- particle size and content[J]. Materials & Design,2020,189:108521.
    [8] SAKKA, S. Birth of the sol-gel method: early history[J]. Journal of Sol-Gel Science and Technology,2022,102(3):478-481. doi: 10.1007/s10971-021-05640-9
    [9] HUSING N, SCHUBERT U. Aerogele-luftige Materialien: Chemie, Struktur and Eigenschaften[J]. Angewandte Chemie,1998,110(1-2):22-47. doi: 10.1002/(SICI)1521-3757(19980116)110:1/2<22::AID-ANGE22>3.0.CO;2-9
    [10] PIETTE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical reviews,2002,102(11):4243-4266. doi: 10.1021/cr0101306
    [11] ZIEGLER C, WOLF A, LIU W, et al. Modern Inorganic Aerogels[J]. Angewandte Chemie,2017,56(43):13200-13221. doi: 10.1002/anie.201611552
    [12] YE X, SHANG S, ZHAO Y, et al. Ultra-efficient adsorption of copper ions in chitosan-montmorillonite composite aerogel at wastewater treatment[J]. Cellulose,2021,28(11):201-7212.
    [13] ZHAO J Q, LU C H, HE X, et al. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery[J]. ACS applied materials & interfaces,2015,7(4):2607-2615.
    [14] HU E L, WU X B, SHANG S M, et al. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst[J]. Journal of Cleaner Production,2016,112:4710-4718. doi: 10.1016/j.jclepro.2015.06.127
    [15] WU K D, DONG W, PAN Y K, et al. Lightweight and Flexible Phenolic Aerogels with Three-Dimensional Foam Reinforcement for Acoustic and Thermal Insulation[J]. Industrial & Engineering Chemistry Research,2021,60(3):1241-1249.
    [16] GARCIA-GONZáLEZ C A, JIN M, GERTH J, et al. Polysaccharide-based aerogel microspheres for oral drug delivery[J]. Carbohydrate Polymers,2015,117117:797-806.
    [17] ZHANG E, ZHANG W, LV T, et al. Insulating and Robust Ceramic Nanorod Aerogels with High-Temperature Resi- stance over 1400°C[J]. ACS Applied Materials & Interfaces,2021,13(17):20548-20558.
    [18] XU C C, WANG H L, SONG J N, et al. Ultralight and Resilient Al2O3 Nanotube Aerogels With Low Thermal Conductivity[J]. Journal of the American Ceramic Society,2018,101(4):1677-1683. doi: 10.1111/jace.15301
    [19] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741-741.
    [20] MERMER N K, YILMAZ M S, OZDEMIR O D, et al. The synthesis of silica-based aerogel from gold mine waste for thermal insulation[J]. Journal of Thermal Analysis and Calorimetry,2017,129(3):1807-1812. doi: 10.1007/s10973-017-6371-8
    [21] ULLMANN K, ÁDáM P, SINKó K. Chemical tailoring of porous aluminum oxide xerogels[J]. Journal of Non-Crystalline Solids,2018,499:304-400.
    [22] MACíAS C, HARO M, PARRA J B, et al. Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels[J]. Carbon,2013,63:487-497. doi: 10.1016/j.carbon.2013.07.024
    [23] OMRANPOUR H, DOURBASH A, MOTAHARI S. Mechanical properties improvement of silica aerogel through aging: Role of solvent type, time and temperature[J]. Journal of Non-Crystalline Solids,2014,1593:298-302.
    [24] PONS A, CASAS L, ESTOP E, et al. A new route to aerogels: Monolithic silica cryogels[J]. Journal of Non-Crystalline Solids,2012,358(3):461-469. doi: 10.1016/j.jnoncrysol.2011.10.031
    [25] RATTI C. Hot air and freeze-drying of high-value foods: a review[J]. Journal of Food Engineering,2001,49(4):311-319. doi: 10.1016/S0260-8774(00)00228-4
    [26] ZHANG Z D, SCHERER G W. Supercritical drying of cementitious materials[J]. Cement and Concrete Research,2017,99:137-154. doi: 10.1016/j.cemconres.2017.05.005
    [27] DURAES L, OCHOA M, ROCHA N, et al. Effect of the drying conditions on the microstructure of silica based xerogels and aerogels[J]. Journal of nanoscience and nanotechnology,2012,12(8):6828-6834. doi: 10.1166/jnn.2012.4560
    [28] 任家飞, 黄星, 李齐方, 等. 增强体复合SiO2气凝胶的研究进展[J]. 化学通报, 2021, 84(4):305-312.

    REN J F, HUANG X, LI Q F, et al. Research Progress in Reinforcement Composite Silica Aerogel[J]. Chemistry,2021,84(4):305-312(in Chinese).
    [29] CAI H F, JIANG Y G, FENG J, et al. Preparation of silica aerogels with high temperature resistance and low thermal con- ductivity by monodispersed silica sol[J]. Materials & Design,2020,191:108640.
    [30] SACHITHANADAM M, JOSHI S C. High strain recovery with improved mechanical properties of gelatin-silica aerogel composites post-binding treatment[J]. Journal of Materials Science,2014,49(1):163-179. doi: 10.1007/s10853-013-7690-1
    [31] 王妮, 任洪波. 不同硅源制备二氧化硅气凝胶的研究进展[J]. 材料导报, 2014, 28(1):42-45+58.

    WANG N, REN H B. Investigation Process of Silica Aerogels Synthesized by Different Types of Silica Recourses[J]. Materials Reports,2014,28(1):42-45+58(in Chinese).
    [32] 马利国, 孙艳荣, 李东来, 等 二氧化硅气凝胶硅源选择的研究进展 [J]. 无机盐工业, 2020, 52(08): 11-6.

    MA L G, SUN Y R, LI D L, et al. Research progress on silicon source selection of silica aerogel [J]. Inorganic Chemicals Industry, 2020, 52(08): 11-16(in Chinses).
    [33] SHAO Z D, LUO F Z, CHENG X, et al. Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying[J]. Materials Chemistry and Physics,2013,141(1):570-575. doi: 10.1016/j.matchemphys.2013.05.064
    [34] SINKO K. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels[J]. Materials,2010,3(1):704-740. doi: 10.3390/ma3010704
    [35] HE S, CHEN X F. Flexible silica aerogel based on methyltrimethoxysilane with improved mechanical property[J]. Journal of Non-Crystalline Solids,2017,463:6-11. doi: 10.1016/j.jnoncrysol.2017.02.014
    [36] ZHAO Y, LI Y, ZHANG R B. Silica aerogels having high flexibility and hydrophobicity prepared by sol-gel method[J]. Ceramics International,2018,44(17):21262-21268. doi: 10.1016/j.ceramint.2018.08.173
    [37] ZHANG Y, XIANG L, SHEN Q Q, et al. Rapid synthesis of dual-mesoporous silica aerogel with excellent adsorption capacity and ultra-low thermal conductivity[J]. Journal of Non-Crystalline Solids,2020,555(1-7):120547.
    [38] SMITHA S, SHAJESH P, ARAVIND P R, et al. Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels[J]. Microporous and Mesoporous Materials,2006,91(1-3):286-292. doi: 10.1016/j.micromeso.2005.11.051
    [39] HæREID S, DAHLE M, LIMA S, et al. Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions[J]. Journal of Non-Crystalline Solids,1995,186:96-103. doi: 10.1016/0022-3093(95)00039-9
    [40] EINARSRUD M-A, KIRKEDELEN M B, NILSEN E, et al. Structural development of silica gels aged in TEOS[J]. Journal of Non-Crystalline Solids,1998,231(1-2):10-16. doi: 10.1016/S0022-3093(98)00405-0
    [41] REICHENAUER G. Thermal aging of silica gels in water[J]. Journal of Non-Crystalline Solids,2004,350:189-195. doi: 10.1016/j.jnoncrysol.2004.07.073
    [42] 何方, 赵红雨, 王改民, 等. 常温下老化介质对硅石气凝胶的影响[J]. 陶瓷研究, 2008(2):75-76. doi: 10.3969/j.issn.1000-9892.2008.02.024

    HE F, ZHAO H Y, WANG G M, et al. At room temperature aging medium on the impact of silica aerogel[J]. Ceramic Studies Journal,2008(2):75-76(in Chinese). doi: 10.3969/j.issn.1000-9892.2008.02.024
    [43] OMRANPOUR H, MOTAHARI S. Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature[J]. Journal of Non-Crystalline Solids,2013,379:7-11. doi: 10.1016/j.jnoncrysol.2013.07.025
    [44] ISWAR S, MALFAIT W J, BALOG S, et al. Effect of aging on silica aerogel properties[J]. Microporous and Mesoporous Materials,2016,241:293-302.
    [45] SUBRAMANIAM I, SANDRA G, LUCA B, et al. Dense and strong, but superinsulating silica aerogel[J]. Acta Materialia,2021,213:116959. doi: 10.1016/j.actamat.2021.116959
    [46] DEEPTANSHU S, ZHAO S Y, SUBRAMAN- IAM I, et al. Aerogel Spring-Back Correlates with Strain Recovery: Effect of Silica Concentration and Aging[J]. Advanced Engineering Materials,2021,23(10):2100376. doi: 10.1002/adem.202100376
    [47] LAKATOS Á, CSARNOVICS I. Influence of thermal annealing on structural properties of silica aerogel super ins- ulation material[J]. Journal of Thermal Analysis and Calorimetry,2020,142(1):321-329. doi: 10.1007/s10973-019-09043-5
    [48] GORDIENKO M, BELOUS D, TYRTYSHNIKOV A, et al. Prediction of structure changes of organic-silica ae rogels during pyrolysis[J]. Elsevier,2017,40:181-186.
    [49] HE S, HUANG Y J, CHEN G N, et al. Effect of heat treatment on hydrophobic silica aerogel[J]. Journal of Hazardous Materials,2019,362:194-302.
    [50] AMEEN K B, RAJASEKAR K, RAJASEKHARAN T, et al. The effect of heat-treatment on the physico-chemical properties of silica aerogel prepared by sub-critical drying technique[J]. Journal of Sol-Gel Science and Technology,2008,45(1):9-15. doi: 10.1007/s10971-007-1630-y
    [51] LUCAS E M, DOESCHER M S, EBENSTEIN D M, et al. Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids[J]. Journal of Non-Crystalline Solids,2004,350:244-252. doi: 10.1016/j.jnoncrysol.2004.07.074
    [52] YE X L, CHEN Z F, LI M, et al. Effect of heat treatment temperature on melamine sponge reinforced silica aerogel[J]. Materials Research Express,2019,6(12):125517. doi: 10.1088/2053-1591/ab590a
    [53] 郭建业, 赵英民, 张丽娟, 等. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(S1):202-205.

    GUO J Y, ZHAO Y M, ZHANG L J, et al. Study on Properties of High-temperature Reusable Silica Aerogel Composites[J]. Materials Reports,2019,33(S1):202-205(in Chinese).
    [54] 赵洪凯, 邵凯, 刘威. 纳米级增强体复合硅气凝胶的研究进展 [J]. 无机盐工业2020, 52(04): 7-11.

    ZHAO H K, SHAO K, LIU W. Research progress of nano-sized reinforced silica aerogel composites [J]. Inorganic Chemicals Industry, 2020, 52(4): 7-11(in Chinese).
    [55] ZIMMERMANN M V G, ZATTERA A J. Silica aerogel reinforced with cellulose nanofibers[J]. Journal of Porous Materials,2021,28(5):1325-1333. doi: 10.1007/s10934-021-01080-6
    [56] SHI J F, LU L B, GUO W T, et al. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels[J]. Carbohydrate Polymers,2013,98(1):282-289. doi: 10.1016/j.carbpol.2013.05.082
    [57] LAMY-MENDES A, SILVA R F, DURAES L. Advances in carbon nanostructure-silica aerogel composites: a review[J]. Journal of Materials Chemistry A,2018,6(4):1340-1369. doi: 10.1039/C7TA08959G
    [58] CAI J, LIU S L, FENG J, et al. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel[J]. Angewandte Chemie,2012,124(9):2118-2121. doi: 10.1002/ange.201105730
    [59] DE VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon Nanotubes: Present and Future Commercial Applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453
    [60] SHOKRIEH M M, RAFIEE R. A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites[J]. Mechanics of composite materials,2010,46(2):155-172. doi: 10.1007/s11029-010-9135-0
    [61] 吴会军, 彭程, 丁云飞, 等. 碳纳米管增强气凝胶隔热复合材料的性能研究[J]. 广州大学学报(自然科学版), 2012, 11(6):32-37.

    WU H J, PENG C, DING Y F, et al. Characterization of carbon nanotubes rei- nforced SiO2 aerogels composites for thermal insulation[J]. Journal of Guangzhou University (Natural Science Edition),2012,11(6):32-37(in Chinese).
    [62] PINERO M, MESADIAZ M M, SANTOS D D L, et al. Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation[J]. Journal of Sol-Gel Science and Technology,2018,86(2):391-399. doi: 10.1007/s10971-018-4645-7
    [63] LAMY-MENDES A, GIRãO A V, SILVA R F, et al. Polysilsesquioxane-based silica aerogel monoliths with embedded CNTs[J]. Mic- roporous and Mesoporous Materials,2019,288:109575. doi: 10.1016/j.micromeso.2019.109575
    [64] SUN T, ZHUO Q, LIU X, et al. Hydrophobic silica aerogel reinforced with carbon nanotube for oils removal[J]. Journal of Porous Materials,2014,21(6):967-973. doi: 10.1007/s10934-014-9845-0
    [65] CHANG, D W, BAEK J B, et al. Eco-friendly synthesis of graphene nanoplatelets[J]. Journal of Materials Chemistry, A,2016,4(40):15281-15293. doi: 10.1039/C6TA06463A
    [66] ZHAO J, WANG Z Y, WHITE J C, et al. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation[J]. Environmental science& techno- logy,2014,48(17):9995-10009.
    [67] LIANG X Q, WANG Y, ZHENG H Y, et al. X-ray absorption spectroscopy study on the thermal and hydrazine reduction of graphene oxide[J]. Journal of Electron Spectroscopy and Related Phenomena,2014,196:89-93. doi: 10.1016/j.elspec.2013.10.011
    [68] COMPTON O C, NGUYEN S B T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small,2010,6(6):711-723. doi: 10.1002/smll.200901934
    [69] ASLAM M, KALYAR M A, RAZA Z A. Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets[J]. Materials Research Express,2016,3(10):105036. doi: 10.1088/2053-1591/3/10/105036
    [70] DERVIN S, LANG Y, PEROVA T, et al. Graphene oxide reinforced high surface area silica aerogels[J]. Journal of Non-Crystalline Solids,2017,465:31-38. doi: 10.1016/j.jnoncrysol.2017.03.030
    [71] LEI Y F, HU Z J, CAO B, et al. Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide[J]. Materials Chemistry and Physics,2017,187:183-190. doi: 10.1016/j.matchemphys.2016.11.064
    [72] LIU H L, HE X, LI Hong Y, et al. Novel GO/silica composite aerogels with enhanced mechanical and thermal insulation properties prepared at ambient pressure[J]. Ferroelectrics,2018,528(1):15-21. doi: 10.1080/00150193.2018.1448192
    [73] LAMY-MENDES A, MALFAIT W J, SADE-GHPOUR A, et al. Influence of 1 D and 2 D carbon nanostructures in silica-based aerogels[J]. Carbon,2021,180:146-162. doi: 10.1016/j.carbon.2021.05.004
    [74] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical reviews,2010,110(6):3749-3500.
    [75] VAN DE VE T G M, SHEIKHI A. Hairy cellulose nanocrystalloids: a novel class of nanocellulose[J]. Nanoscale,2016,8(33):15101-115114. doi: 10.1039/C6NR01570K
    [76] PLAPPERT S F, NEDELEC J M, RENNOEH, et al. Strain Hardening and Pore Size Harmonization by Uniaxial Densification: A Facile Approach toward Superinsulating Aerogels from Nematic Nanofibrillated 2, 3-Dicarboxyl Cellulose[J]. Chemistry of Materials,2017,29(16):6630-6641. doi: 10.1021/acs.chemmater.7b00787
    [77] JIANG F, HU S X, HSIEH Y L. Aqueous Synthesis of Compressible and Thermally Stable Cellulose Nanofibril-Silica Aerogel for CO2 Adsorption[J]. ACS Applied Nano Materials,2018,1(12):6701-6710. doi: 10.1021/acsanm.8b01515
    [78] CHEN X Y, SEPAHVAND S, GAUVUN F, et al. One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor[J]. Construction and Building Materials,2021,293:123289. doi: 10.1016/j.conbuildmat.2021.123289
    [79] 付菁菁, 何春霞, 陈永生, 等. 纳米纤维素增强SiO2气凝胶力学性能与微观结构[J]. 复合材料学报, 2018, 35(9):2593-9.

    Fu J J, He C X, Chen Y S, et al. Mechanical properties and microstructure of SiO2 aerogel reinforced with cellulose nanofibrils[J]. Acta Materiae Compositae Sinica,2018,35(9):2593-9(in Chinese).
    [80] ROCHA H, LAFONT U, SEMPRIMOSCHNIG C. Environmental testing and characterizati- on of fibre reinforced silica aerogel materials for Mars exploration[J]. Acta Astronautica,2019,165:9-16. doi: 10.1016/j.actaastro.2019.07.030
    [81] MIRKHALAF S M, EGGELSB E H, BEURDEN T J H V, et al. A finite element based orientation averaging method for predicting elastic properties of short fiber reinforced composites[J]. Composites Part B,2020,202:108388. doi: 10.1016/j.compositesb.2020.108388
    [82] DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology,2008,199(1-3):10-26. doi: 10.1016/j.jmatprotec.2007.10.060
    [83] Yu H, Jiang Y, Lu Y, et al. Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying[J]. Journal of Non-Crystalline Solids,2019,505:79-86. doi: 10.1016/j.jnoncrysol.2018.10.039
    [84] 王衍飞, 张长瑞, 冯坚, 等. SiO2气凝胶/短切石英纤维多孔骨架复合材料的制备与性能[J]. 硅酸盐学报, 2009, 37(2):234-237.

    WANG Y F, ZHANG C R, FENG J, et al. Fabrication and Properties of SiO2-aerogel Loading Chopped Mullite Fiber Porous Skeleton Composite[J]. Journal of National University of Defense Technology,2009,37(2):234-237(in Chinese).
    [85] ZHOU T, CHENG X, PAN Y, et al. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying[J]. Applied Surface Science,2018,437:321-328. doi: 10.1016/j.apsusc.2017.12.146
    [86] 马佳, 沈晓冬, 崔升, 等. 纤维增强二氧化硅气凝胶复合材料的制备和低温性能[J]. 材料导报, 2015, 29(20):43-46+63.

    MA J, SHEN X D, CUI S, et al. Preparation and Low-temperature Properties of Fiber Reinforced SiO2 Aerogel Composites[J]. Materials Reports,2015,29(20):43-46+63(in Chinese).
    [87] HUNG W C, HORNG R S, SHIA R E. Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites[J]. Journal of Sol-Gel Science and Technology,2021,97(2):414-421. doi: 10.1007/s10971-020-05444-3
    [88] TIAN J Q, SHAFI S, TAN H J, et al. Mechanical and thermal-insulating performance of silica aerogel enhanced jointly with glass fiber and fumed silica by a facile compressing technique[J]. Chemical Physics Letters,2020,739:136950. doi: 10.1016/j.cplett.2019.136950
    [89] 王小雅, 曹云峰. 新型纤维材料—陶瓷纤维[J]. 纤维素科学与技术, 2012, 20(1):79-85. doi: 10.3969/j.issn.1004-8405.2012.01.012

    WANG X Y, CAO Y F. Ceramic Fiber as a New Material[J]. Journal of Cellulose Science and Technology,2012,20(1):79-85(in Chinese). doi: 10.3969/j.issn.1004-8405.2012.01.012
    [90] 高庆福, 冯坚, 张长瑞, 等. 陶瓷纤维增强氧化硅气凝胶隔热复合材料的力学性能[J]. 硅酸盐学报, 2009, 37(1):1-5. doi: 10.14062/j.issn.0454-5648.2009.01.010

    GAO Q F, FENG J, ZHANG C R, et al. Mechanical properties of ceramic fiber reinforced silica aerogel insulation composites[J]. Journal of National University of Defense Technology,2009,37(1):1-5(in Chinese). doi: 10.14062/j.issn.0454-5648.2009.01.010
    [91] YANG X G, SUN Y T, SHI D Q, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science & Engi- neering A,2011,528(13-14):4830-4836.
    [92] 米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):635-43. doi: 10.13801/j.cnki.fhclxb.2014.03.015

    MI C H, JIANG Y G, SHI D Q, et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Materiae Compositae Sinica,2014,31(3):635-43(in Chinese). doi: 10.13801/j.cnki.fhclxb.2014.03.015
    [93] DU D X, JIANG Y G, FENG J Z, et al. Facile synthesis of silica aerogel composites via ambient-pressure drying without surface modification or solvent exchange[J]. Vacuum,2020,173:109117. doi: 10.1016/j.vacuum.2019.109117
    [94] LI Z, CHENG X D, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A,2016,84:316-325. doi: 10.1016/j.compositesa.2016.02.014
    [95] ALMEIDA C M R, GHICA M E, RAMALHO A L, et al. Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments[J]. Journal of Materials Science,2021,56(24):13604-13619. doi: 10.1007/s10853-021-06142-3
    [96] YI Z H, YAN L W, ZHANG T, et al. Thermal insulated and mechanical enhanced silica aerogel nanocomposite with in-situ growth of mullite whisker on the surface of aluminum silicate fiber[J]. Composites Part A,2020,136:105968. doi: 10.1016/j.compositesa.2020.105968
    [97] 罗丹, 龙丽娟, 秦舒浩, 等. 碳纤毡和硅酸铝纤维增强二氧化硅气凝胶的制备及性能[J]. 广州化学, 2022, 47(3):46-51. doi: 10.16560/j.cnki.gzhx.20220312

    LUO D, LONG L J, QIN S H, et al. Preparation and Properties of Silica Aerogel Reinforced with Different Fibers[J]. Guangzhou Chemistry,2022,47(3):46-51(in Chinese). doi: 10.16560/j.cnki.gzhx.20220312
    [98] 张丽娟, 王洋, 李文静, 等. 耐高温透波气凝胶复合材料性能[J]. 宇航材料工艺, 2015, 45(4):47-50+53.

    ZHANG L J, WANG Y, LI W J, et al. Properties of High Temperature Resistant Wave-Transparent Aerogels Composites[J]. Aerospace Materials & Technology,2015,45(4):47-50+53(in Chinese).
    [99] SHAFI S, ZHAO Y P. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation[J]. Journal of Porous Materials,2019,27(2):495-502.
    [100] MERILLAS B, LAMY-MENDES A, VILLAFANE F, et al. Polyurethane foam scaffold for silica aerogels: effect of cell size on the mechanical properties and thermal insulation[J]. Materials Today Chemistry,2022,26:101257. doi: 10.1016/j.mtchem.2022.101257
    [101] SONG Z H, ZHAO Y F, YUAN M, et al. Thermal Insulation and Moisture Resistance of High-Performance Silicon Aerogel Composite Foam Ceramic and Foam Glass[J]. Advanced Engineering Materials,2022,24(8):2101508. doi: 10.1002/adem.202101508
    [102] 李婧, 黄洁, 章伊婷, 等. 负载相变微胶囊的三聚氰胺/二氧化硅柔性气凝胶[J]. 高分子材料科学与工程, 2022, 38(8):122-128. doi: 10.16865/j.cnki.1000-7555.2022.0172

    LI J, HUANG J, ZHANG Y T, et al. Structure and Properties of Melamine/Silicon Dioxide Flexible Aerogels Loaded with Phase Transition Microcapsules[J]. Polymer Materials Science & Engineering,2022,38(8):122-128(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0172
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-03-27
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-05-04

目录

    /

    返回文章
    返回