留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2气凝胶力学性能增强研究进展

展望 时钒 李丽霞 陈乐 陈明毅 孔庆红 张庆武

展望, 时钒, 李丽霞, 等. SiO2气凝胶力学性能增强研究进展[J]. 复合材料学报, 2023, 40(9): 4958-4971. doi: 10.13801/j.cnki.fhclxb.20230420.001
引用本文: 展望, 时钒, 李丽霞, 等. SiO2气凝胶力学性能增强研究进展[J]. 复合材料学报, 2023, 40(9): 4958-4971. doi: 10.13801/j.cnki.fhclxb.20230420.001
ZHAN Wang, SHI fan, LI Lixia, et al. Research progress on mechanical properties enhancement of SiO2 aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4958-4971. doi: 10.13801/j.cnki.fhclxb.20230420.001
Citation: ZHAN Wang, SHI fan, LI Lixia, et al. Research progress on mechanical properties enhancement of SiO2 aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 4958-4971. doi: 10.13801/j.cnki.fhclxb.20230420.001

SiO2气凝胶力学性能增强研究进展

doi: 10.13801/j.cnki.fhclxb.20230420.001
基金项目: 国家自然科学基金(52004131);国家自然科学基金(52204213);江苏大学应急管理学院大学生科研训练培育项目(JG-03-07)
详细信息
    通讯作者:

    李丽霞,博士,副教授,硕士生导师,研究方向为功能材料的合成 E-mail:qingpipa@ujs.edu.cn

  • 中图分类号: TB332

Research progress on mechanical properties enhancement of SiO2 aerogels

Funds: National Natural Science Foundation of China (52004131);National Natural Science Foundation of China (52204213);The Students Scientific Research Training Program of College of Emergency Management of Jiangsu University (JG-03-07)
  • 摘要: 随着社会飞速发展,潜伏的火灾隐患对社会安全造成巨大的威胁,使用防火隔热材料可以有效地进行火灾防控。气凝胶具有密度低、导热系数低、孔隙率高等特点,且呈现出优异的防火隔热性能。SiO2气凝胶是气凝胶材料的典型代表,目前在诸多行业被广泛应用。但是目前SiO2气凝胶仍存在力学性能较差的瓶颈问题,极大地限制了工程应用,因此需要通过引入增强体使SiO2气凝胶保持其本身优良特性的同时需增强其力学性能。本文对目前增强SiO2材料的研究现状进行了简述,并着重针对在制备SiO2气凝胶过程中通过优化工艺及添加纳米材料、纤维、成型体来提高力学性能的方法进行了讨论分析。最后提出了SiO2气凝胶未来的研究方向及发展的建议。

     

  • 图  1  SiO2气凝胶力学性能增强方法

    Figure  1.  Mechanical property enhancement methods of silica aerogel

    图  2  柔性SiO2气凝胶压缩结果[35]

    Figure  2.  Compression result of flexible SiO2 aerogel[35]

    图  3  双介孔SiO2气凝胶反应机制图:(a) 水解反应;((b)~(d)) 缩合反应[37]

    Figure  3.  Mechanism of the double mesoporous SiO2 aerogelchemical reactions: (a) Hydrolysis reaction; ((b)-(d)) Condensation reaction[37]

    TEOS—Tetraethyl orthosilicate; MTES—Methyl triethoxysilane; MT-0.3—TEOS∶MTES=0.3∶0.7 (Molar ratio); M-0—TEOS∶MTES=0∶1 (Molar ratio); T-1—TEOS∶MTES=1∶0 (Molar ratio)

    图  4  不同老化条件下制备的SiO2气凝胶[44]

    Figure  4.  SiO2 aerogels prepared under different aging conditions[44]

    图  5  SiO2气凝胶刚度及密度随时间变化规律[45]

    Figure  5.  Variation of stiffness and density of SiO2 aerogel with time[45]

    图  6  气凝胶颗粒转化过程的强化模型及不同温度热处理后三聚氰胺(MS)/SiO2气凝胶SEM图像[52]

    Figure  6.  Strengthen model of aerogel particles transformation process and SEM images of melamine (MS)/SiO2 aerogels prepared by heat treatment at different temperatures[52]

    图  7  不同温度处理后气凝胶SEM图像[53]

    Figure  7.  SEM images of aerogel processed at different temperatures[53]

    图  8  不同碳纳米管含量碳纳米管(CNTs)/SiO2气凝胶图像[62]

    Figure  8.  Images of carbon nanotubes (CNTs)/silica aerogels with different CNTs content[62]

    图  9  CNTS/SiO2气凝胶的制备流程及SEM图像[63]

    Figure  9.  Preparation process and SEM images of CNTs/SiO2 aerogel[63]

    图  10  氧化石墨烯(GO)/SiO2气凝胶制备流程图[70]

    Figure  10.  Preparation process of graphene oxide (GO)/SiO2 aerogels[70]

    图  11  (a) SiO2/GO复合气凝胶形成的示意图;(b) SiO2/GO-5.0复合材料HRTEM图像[71]

    Figure  11.  (a) Schematic illustration of the formation of SiO2/GO composite aerogels; (b) HRTEM images of SiO2/GO-5.0 composites[71]

    5.0 in SiO2/GO-5.0—Amount of GO added is 5.0wt%

    图  12  添加不同纳米纤维素(CNFs)及表面处理气凝胶的SEM图像:(a) 未改性CNF1;(b) 未改性 CNF2;(c) 改性 CNF1;(d) 改性 CNF2[78]

    Figure  12.  SEM of aerogels with different nano cellulose (CNFs) and surface treatment: (a) Unmodified CNF1; (b) Unmodified CNF2; (c) Modified CNF1; (d) Modified CNF2[78]

    CNF1—Fine S: 94%, Fine P: 4.6%; CNF2—Fine S: 48%, Fine P: 23.5%

    图  13  CNF/SiO2气凝胶应力-应变曲线[78]

    Figure  13.  Stress-strain curves of CNF/SiO2 aerogels[78]

    SS—Silica sol; M—TMCS modification; NCA1—5 mL CNF1+ 25 mL distilled water

    图  14  800oC时石英纤维(QF)/Al2O3-SiO2复合材料的SEM图像[83]

    Figure  14.  SEM images of quartz fiber (QF)/Al2O3-SiO2 composite at 800oC[83]

    图  15  (a) QF/SiO2气凝胶的SEM图像;(b) 纤维搭接处SEM图像[84]

    Figure  15.  (a) SEM image of QF/SiO2 aerogel; (b) SEM image of joining of fibers[84]

    图  16  玻璃纤维(GF)/SiO2气凝胶制备工艺[87]

    Figure  16.  Preparation technology of glass fiber (GF)/SiO2 aerogel[87]

    图  17  SiO2气凝胶与气相SiO2比例对SiO2复合材料导热系数和弯曲模量的影响[88]

    Figure  17.  Influence of the ratio of SiO2 aerogel to the fumed SiO2 on the thermal conductivity and flexural modulus of the SiO2 composites[88]

    图  18  纤维的分层结构分布[94]

    Figure  18.  Layered structure of the fiber distribution[94]

    图  19  硅酸铝纤维毡(ASF)/莫来石晶须(MW)/SiO2气凝胶制备流程图[96]

    Figure  19.  Preparation process of alumina silicate fiber felt (ASF)/mullite whisker (MW)/SiO2 aerogels[96]

    图  20  (a) 碳纤维毡增强SiO2气凝胶SEM图像;(b) 硅酸铝纤维毡增强 SiO2气凝胶SEM图[97]

    Figure  20.  (a) SEM images of carbon fiber felt reinforced SiO2 aerogels; (b) SEM images of aluminum silicate fiber felt reinforced SiO2 aerogel [97]

    图  21  不同温度下QF/SiO2气凝胶的拉伸强度和断裂伸长率[98]

    Figure  21.  Tensile strength and elongation at break of QF/silica aerogels at different temperatures[98]

    图  22  GF/SiO2气凝胶压缩实验:(a) 压缩前;(b) 压缩达到60%应变;(c) 压缩后完全恢复[99]

    Figure  22.  Compression test of GF/SiO2 aerogels: (a) Before compression; (b) Compression up to 60% strain; (c) Recovered fully after compression[99]

    图  23  网状聚氨酯泡沫及不同泡孔尺寸结构显微照片[100]

    Figure  23.  Microstructure of reticulated polyurethane foam and different cell sizes[100]

    图  24  泡沫陶瓷@二氧化硅气凝胶(FG@SA)和泡沫玻璃@二氧化硅气凝胶(FG@SA)结构示意图[101]

    Figure  24.  Demonstration diagram of ceramic foam@SiO2 aerogels(FG@SA) and foam glass@SiO2 aerogels(FG@SA) structure[101]

    表  1  SiO2气凝胶样品的初始组成[35]

    Table  1.   Starting compositions of SiO2 aerogel samples[35]

    SampleV(EtOH)∶V(H2O)V(TMCS)∶M(CTAB)
    S-141∶140∶0.1
    S-132∶130∶0.1
    S-123∶120∶0.1
    S-114∶110∶0.1
    S-105∶100∶0.1
    S-14 m1∶144∶0.1
    S-11 m1/114∶0.1
    Notes: EtOH—Absolute ethyl alcohol; TMCS—Trimethylchlorosilane; CTAB—Cetyltrimethyl ammonium bromide; V—Volume, mL; M—Mass, g.
    下载: 导出CSV

    表  2  不同途径增强后气凝胶的热-力性能

    Table  2.   Thermo-mechanical properties of aerogel after enhancement by different approaches

    Enhancement methodsMechanical propertyThermal conductivity/(W·(m·K)−1)
    Silicon source[36]Young’s modulus: 56 kPa0.0343
    Aging[44-45]Young’s modulus: 0.117 MPa0.027
    Heat treatment[52]Maximum stress: 0.764 MPa (40% strain)0.0278
    CNTs[63]Young’s modulus: 201.5 kPa0.0312
    GO[72]Compressive strength: 0.65 MPa0.018
    CNF[78]Compressive strength: 95.4 kPa
    Young’s modulus: 122.2 kPa
    0.023
    Quartz fiber[84]Bending strength: 2.34 MPa0.0335
    Glass fiber[85]Young’s modulus: 1393 kPa0.0213
    Ceramic fiber[93]Compressive strength: 0.1082 MPa(10% strain)0.101
    Aramid fiber[94]Young’s modulus: 0.14 MPa0.0227
    Fiber felt[96]Compressive strength: 2.33 MPa
    (25% strain)
    0.0373
    Blown foam[100]Young’s modulus: 307 kPa0.0123
    下载: 导出CSV
  • [1] DING Y, LIU T, JIANG Y, et al. Flexible fire-resistant and heat-insulating materials fabricated using sodium titanate nanobelts[J]. Materials Today Nano,2022,17:100161. doi: 10.1016/j.mtnano.2021.100161
    [2] JELLE B P. Traditional, state-of-the-art and future thermal building insulation materials and solutions-properties, requirements and possibilities. Energy Build[J]. Energy and Buildings,2011,43(10):2549-2563.
    [3] CUCE E, CUCE P M, WOOD C J, et al. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings[J]. Energy and Buildings,2014,77:28-39.
    [4] LINHARES T, DE AMORIM M T P, DURÃES L. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications[J]. Journal of Materials Chemistry A,2019,7(40):22768-22802. doi: 10.1039/C9TA04811A
    [5] GANESAMOORTHY R, VADIVEL V K, KUMAR R, et al. Aerogels for water treatment: A review[J]. Journal of Cleaner Production,2021,329:129713. doi: 10.1016/j.jclepro.2021.129713
    [6] ZHAO S Y, STOJANOVIC A, ANGELICA E, et al. Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent- and ion-exchange[J]. Chemical Engineering Journal,2019,381:122421.
    [7] FIDALGO A, FARINHA J P S, MARTINHO J M G, et al. Nanohybrid silica/polymer aerogels: The combined influence of polymer nanoparticle size and content[J]. Materials & Design,2020,189:108521.
    [8] SAKKA S. Birth of the sol-gel method: Early history[J]. Journal of Sol-Gel Science and Technology,2022,102(3):478-481. doi: 10.1007/s10971-021-05640-9
    [9] HÜSING N, SCHUBERT U. Aerogele-luftige materialien: Chemie, struktur and eigenschaften[J]. Angewandte Chemie,1998,110(1-2):22-47. doi: 10.1002/(SICI)1521-3757(19980116)110:1/2<22::AID-ANGE22>3.0.CO;2-9
    [10] PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews,2002,102(11):4243-4266. doi: 10.1021/cr0101306
    [11] ZIEGLER C, WOLF A, LIU W, et al. Modern inorganic aerogels[J]. Angewandte Chemie,2017,56(43):13200-13221. doi: 10.1002/anie.201611552
    [12] YE X, SHANG S S, ZHAO Y F, et al. Ultra-efficient adsorption of copper ions in chitosan-montmorillonite compo-site aerogel at wastewater treatment[J]. Cellulose,2021,28(11):7201-7212.
    [13] ZHAO J Q, LU C H, HE X, et al. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery[J]. ACS Applied Materials & Interfaces,2015,7(4):2607-2615.
    [14] HU E L, WU X B, SHANG S M, et al. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst[J]. Jour-nal of Cleaner Production,2016,112:4710-4718. doi: 10.1016/j.jclepro.2015.06.127
    [15] WU K D, DONG W, PAN Y K, et al. Lightweight and flexible phenolic aerogels with three-dimensional foam reinforcement for acoustic and thermal insulation[J]. Industrial & Engineering Chemistry Research,2021,60(3):1241-1249.
    [16] GARCÍA-GONZÁLEZ C A, JIN M, GERTH J, et al. Polysaccharide-based aerogel microspheres for oral drug delivery[J]. Carbohydrate Polymers,2015,117:797-806.
    [17] ZHANG E S, ZHANG W L, LYU T, et al. Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400°C[J]. ACS Applied Materials & Interfaces,2021,13(17):20548-20558.
    [18] XU C C, WANG H L, SONG J N, et al. Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity[J]. Journal of the American Ceramic Society,2018,101(4):1677-1683. doi: 10.1111/jace.15301
    [19] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741.
    [20] MERMER N K, YILMAZ M S, OZDEMIR O D, et al. The synthesis of silica-based aerogel from gold mine waste for thermal insulation[J]. Journal of Thermal Analysis and Calorimetry,2017,129(3):1807-1812. doi: 10.1007/s10973-017-6371-8
    [21] ULLMANN K, ÁDÁM P, SINKÓ K. Chemical tailoring of porous aluminum oxide xerogels[J]. Journal of Non-Crystalline Solids,2018,499:394-400.
    [22] MACÍAS C, HARO M, PARRA J B, et al. Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels[J]. Carbon,2013,63:487-497. doi: 10.1016/j.carbon.2013.07.024
    [23] OMRANPOUR H, DOURBASH A, MOTAHARI S. Mechanical properties improvement of silica aerogel through aging: Role of solvent type, time and temperature[J]. Journal of Non-Crystalline Solids,2014,1593:298-302.
    [24] PONS A, CASAS L, ESTOP E, et al. A new route to aerogels: Monolithic silica cryogels[J]. Journal of Non-Crystalline Solids,2012,358(3):461-469. doi: 10.1016/j.jnoncrysol.2011.10.031
    [25] RATTI C. Hot air and freeze-drying of high-value foods: A review[J]. Journal of Food Engineering,2001,49(4):311-319. doi: 10.1016/S0260-8774(00)00228-4
    [26] ZHANG Z D, SCHERER G W. Supercritical drying of cementitious materials[J]. Cement and Concrete Research,2017,99:137-154. doi: 10.1016/j.cemconres.2017.05.005
    [27] DURÃES L, OCHOA M, ROCHA N, et al. Effect of the drying conditions on the microstructure of silica based xerogels and aerogels[J]. Journal of Nanoscience and Nanotechnology,2012,12(8):6828-6834. doi: 10.1166/jnn.2012.4560
    [28] 任家飞, 黄星, 李齐方, 等. 增强体复合SiO2气凝胶的研究进展[J]. 化学通报, 2021, 84(4):305-312.

    REN Jiafei, HUANG Xing, LI Qifang, et al. Research progress in reinforcement composite silica aerogel[J]. Chemistry,2021,84(4):305-312(in Chinese).
    [29] CAI H F, JIANG Y G, FENG J, et al. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol[J]. Materials & Design,2020,191:108640.
    [30] SACHITHANADAM M, JOSHI S C. High strain recovery with improved mechanical properties of gelatin-silica aerogel composites post-binding treatment[J]. Journal of Materials Science,2014,49(1):163-179. doi: 10.1007/s10853-013-7690-1
    [31] 王妮, 任洪波. 不同硅源制备二氧化硅气凝胶的研究进展[J]. 材料导报, 2014, 28(1):42-45, 58.

    WANG Ni, REN Hongbo. Investigation process of silica aerogels synthesized by different types of silica recourses[J]. Materials Reports,2014,28(1):42-45, 58(in Chinese).
    [32] 马利国, 孙艳荣, 李东来, 等. 二氧化硅气凝胶硅源选择的研究进展[J]. 无机盐工业, 2020, 52(8): 11-16.

    MA Liguo, SUN Yanrong, LI Donglai, et al. Research progress on silicon source selection of silica aerogel[J]. Inorganic Chemicals Industry, 2020, 52(8): 11-16(in Chinses).
    [33] SHAO Z D, LUO F Z, CHENG X, et al. Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying[J]. Materials Chemistry and Physics,2013,141(1):570-575. doi: 10.1016/j.matchemphys.2013.05.064
    [34] SINKÓ K. Influence of chemical conditions on the nanoporous structure of silicate aerogels[J]. Materials,2010,3(1):704-740. doi: 10.3390/ma3010704
    [35] HE S, CHEN X F. Flexible silica aerogel based on methyltrimethoxysilane with improved mechanical property[J]. Journal of Non-Crystalline Solids,2017,463:6-11. doi: 10.1016/j.jnoncrysol.2017.02.014
    [36] ZHAO Y, LI Y, ZHANG R B. Silica aerogels having high flexibility and hydrophobicity prepared by sol-gel method[J]. Ceramics International,2018,44(17):21262-21268. doi: 10.1016/j.ceramint.2018.08.173
    [37] ZHANG Y, XIANG L, SHEN Q Q, et al. Rapid synthesis of dual-mesoporous silica aerogel with excellent adsorption capacity and ultra-low thermal conductivity[J]. Journal of Non-Crystalline Solids,2020,555(1-7):120547.
    [38] SMITHA S, SHAJESH P, ARAVIND P R, et al. Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels[J]. Microporous and Mesoporous Materials,2006,91(1-3):286-292. doi: 10.1016/j.micromeso.2005.11.051
    [39] HÆREID S, DAHLE M, LIMA S, et al. Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions[J]. Journal of Non-Crystalline Solids,1995,186:96-103. doi: 10.1016/0022-3093(95)00039-9
    [40] EINARSRUD M A, BRITT KIRKEDELEN M, NILSEN E, et al. Structural development of silica gels aged in TEOS[J]. Journal of Non-Crystalline Solids,1998,231(1-2):10-16. doi: 10.1016/S0022-3093(98)00405-0
    [41] REICHENAUER G. Thermal aging of silica gels in water[J]. Journal of Non-Crystalline Solids,2004,350:189-195. doi: 10.1016/j.jnoncrysol.2004.07.073
    [42] 何方, 赵红雨, 王改民, 等. 常温下老化介质对硅石气凝胶的影响[J]. 陶瓷研究, 2008,23(2):75-76. doi: 10.3969/j.issn.1000-9892.2008.02.024

    HE Fang, ZHAO Hongyu, WANG Gaimin, et al. At room temperature aging medium on the impact of silica aerogel[J]. Ceramic Studies Journal,2008,23(2):75-76(in Chinese). doi: 10.3969/j.issn.1000-9892.2008.02.024
    [43] OMRANPOUR H, MOTAHARI S. Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature[J]. Journal of Non-Crystalline Solids,2013,379:7-11. doi: 10.1016/j.jnoncrysol.2013.07.025
    [44] ISWAR S, MALFAIT W J, BALOG S, et al. Effect of aging on silica aerogel properties[J]. Microporous and Mesoporous Materials,2016,241:293-302.
    [45] ISWAR S, GALMARINI S, BONANOMI L, et al. Dense and strong, but superinsulating silica aerogel[J]. Acta Materialia,2021,213:116959. doi: 10.1016/j.actamat.2021.116959
    [46] SIVARAMAN D, ZHAO S Y, ISWAR S, et al. Aerogel spring-back correlates with strain recovery: Effect of silica concentration and aging[J]. Advanced Engineering Materials,2021,23(10):2100376. doi: 10.1002/adem.202100376
    [47] LAKATOS Á, CSARNOVICS I. Influence of thermal annealing on structural properties of silica aerogel super insulation material[J]. Journal of Thermal Analysis and Calorimetry,2020,142(1):321-329. doi: 10.1007/s10973-019-09043-5
    [48] GORDIENKO M, BELOUS D, TYRTYSHNIKOV A, et al. Prediction of structure changes of organic-silica aerogels during pyrolysis[J]. Elsevier,2017,40:181-186.
    [49] HE S, HUANG Y J, CHEN G N, et al. Effect of heat treatment on hydrophobic silica aerogel[J]. Journal of Hazardous Materials,2019,362:294-302.
    [50] AMEEN K B, RAJASEKAR K, RAJASEKHARAN T, et al. The effect of heat-treatment on the physico-chemical properties of silica aerogel prepared by sub-critical drying technique[J]. Journal of Sol-Gel Science and Technology,2008,45(1):9-15. doi: 10.1007/s10971-007-1630-y
    [51] LUCAS E M, DOESCHER M S, EBENSTEIN D M, et al. Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids[J]. Journal of Non-Crystalline Solids,2004,350:244-252. doi: 10.1016/j.jnoncrysol.2004.07.074
    [52] YE X L, CHEN Z F, LI M, et al. Effect of heat treatment temperature on melamine sponge reinforced silica aerogel[J]. Materials Research Express,2019,6(12):125517. doi: 10.1088/2053-1591/ab590a
    [53] 郭建业, 赵英民, 张丽娟, 等. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(S1):202-205.

    GUO Jianye, ZHAO Yingmin, ZHANG Lijuan, et al. Study on properties of high-temperature reusable silica aerogel composites[J]. Materials Reports,2019,33(S1):202-205(in Chinese).
    [54] 赵洪凯, 邵凯, 刘威. 纳米级增强体复合硅气凝胶的研究进展[J]. 无机盐工业, 2020, 52(4): 7-11.

    ZHAO Hongkai, SHAO Kai, LIU Wei. Research progress of nano-sized reinforced silica aerogel composites[J]. Inorganic Chemicals Industry, 2020, 52(4): 7-11(in Chinese).
    [55] ZIMMERMANN M V G, ZATTERA A J. Silica aerogel reinforced with cellulose nanofibers[J]. Journal of Porous Materials,2021,28(5):1325-1333. doi: 10.1007/s10934-021-01080-6
    [56] SHI J F, LU L B, GUO W T, et al. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels[J]. Carbohydrate Polymers,2013,98(1):282-289. doi: 10.1016/j.carbpol.2013.05.082
    [57] LAMY-MENDES A, SILVA R F, DURÃES L. Advances in carbon nanostructure-silica aerogel composites: a review[J]. Journal of Materials Chemistry A,2018,6(4):1340-1369. doi: 10.1039/C7TA08959G
    [58] CAI J E, LIU S L, FENG J A, et al. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel[J]. Angewandte Chemie,2012,124(9):2118-2121. doi: 10.1002/ange.201105730
    [59] DE VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science,2013,339(6119):535-539. doi: 10.1126/science.1222453
    [60] SHOKRIEH M M, RAFIEE R. A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites[J]. Mechanics of Composite Materials,2010,46(2):155-172. doi: 10.1007/s11029-010-9135-0
    [61] 吴会军, 彭程, 丁云飞, 等. 碳纳米管增强气凝胶隔热复合材料的性能研究[J]. 广州大学学报(自然科学版), 2012, 11(6):32-37.

    WU Huijun, PENG Cheng, DING Yunfei, et al. Characterization of carbon nanotubes reinforced SiO2 aerogels composites for thermal insulation[J]. Journal of Guangzhou University (Natural Science Edition),2012,11(6):32-37(in Chinese).
    [62] PIÑERO M, DEL MAR MESA-DÍAZ M, DE LOSSANTOS D, et al. Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation[J]. Journal of Sol-Gel Science and Technology,2018,86(2):391-399. doi: 10.1007/s10971-018-4645-7
    [63] LAMY-MENDES A, GIRÃO A V, SILVA R F, et al. Polysilsesquioxane-based silica aerogel monoliths with embedded CNTs[J]. Microporous and Mesoporous Materials,2019,288:109575. doi: 10.1016/j.micromeso.2019.109575
    [64] SUN T, ZHUO Q, LIU X, et al. Hydrophobic silica aerogel reinforced with carbon nanotube for oils removal[J]. Journal of Porous Materials,2014,21(6):967-973. doi: 10.1007/s10934-014-9845-0
    [65] CHANG D W, BAEK J B. Eco-friendly synthesis of graphene nanoplatelets[J]. Journal of Materials Che-mistry, A,2016,4(40):15281-15293. doi: 10.1039/C6TA06463A
    [66] ZHAO J, WANG Z Y, WHITE J C, et al. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation[J]. Environmental Science & Technology,2014,48(17):9995-10009.
    [67] LIANG X Q, WANG Y, ZHENG H Y, et al. X-ray absorption spectroscopy study on the thermal and hydrazine reduction of graphene oxide[J]. Journal of Electron Spectroscopy and Related Phenomena,2014,196:89-93. doi: 10.1016/j.elspec.2013.10.011
    [68] COMPTON O C, NGUYEN S B T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials[J]. Small,2010,6(6):711-723. doi: 10.1002/smll.200901934
    [69] ASLAM M, KALYAR M A, RAZA Z A. Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets[J]. Materials Research Express,2016,3(10):105036. doi: 10.1088/2053-1591/3/10/105036
    [70] DERVIN S, LANG Y, PEROVA T, et al. Graphene oxide reinforced high surface area silica aerogels[J]. Journal of Non-Crystalline Solids,2017,465:31-38. doi: 10.1016/j.jnoncrysol.2017.03.030
    [71] LEI Y F, HU Z J, CAO B, et al. Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide[J]. Materials Chemistry and Physics,2017,187:183-190. doi: 10.1016/j.matchemphys.2016.11.064
    [72] LIU H L, HE X A, LI H Y, et al. Novel GO/silica composite aerogels with enhanced mechanical and thermal insulation properties prepared at ambient pressure[J]. Ferroelectrics,2018,528(1):15-21. doi: 10.1080/00150193.2018.1448192
    [73] LAMY-MENDES A, MALFAIT W J, SADE-GHPOUR A, et al. Influence of 1D and 2D carbon nanostructures in silica-based aerogels[J]. Carbon,2021,180:146-162. doi: 10.1016/j.carbon.2021.05.004
    [74] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: Chemistry, self-assembly, and applications[J]. Chemical Reviews,2010,110(6):3479-3500.
    [75] VAN DE VEN T G M, SHEIKHI A. Hairy cellulose nanocrystalloids: A novel class of nanocellulose[J]. Nanoscale,2016,8(33):15101-15114. doi: 10.1039/C6NR01570K
    [76] PLAPPERT S F, NEDELEC J M, RENNHOFER H, et al. Strain hardening and pore size harmonization by uniaxial densification: A facile approach toward superinsulating aerogels from nematic nanofibrillated 2, 3-dicarboxyl cellulose[J]. Chemistry of Materials,2017,29(16):6630-6641. doi: 10.1021/acs.chemmater.7b00787
    [77] JIANG F, HU S X, HSIEH Y L. Aqueous synthesis of compressible and thermally stable cellulose nanofibril-silica aerogel for CO2 adsorption[J]. ACS Applied Nano Materials,2018,1(12):6701-6710. doi: 10.1021/acsanm.8b01515
    [78] CHEN Y X, SEPAHVAND S, GAUVIN F, et al. One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor[J]. Construction and Building Materials,2021,293:123289. doi: 10.1016/j.conbuildmat.2021.123289
    [79] 付菁菁, 何春霞, 陈永生, 等. 纳米纤维素增强SiO2气凝胶力学性能与微观结构[J]. 复合材料学报, 2018, 35(9):2593-2599.

    FU Jingjing, HE Chunxia, CHEN Yongsheng, et al. Mechanical properties and microstructure of SiO2 aerogel reinforced with cellulose nanofibrils[J]. Acta Materiae Compositae Sinica,2018,35(9):2593-2599(in Chinese).
    [80] ROCHA H, LAFONT U, SEMPRIMOSCHNIG C. Environmental testing and characterization of fibre reinforced silica aerogel materials for Mars exploration[J]. Acta Astronautica,2019,165:9-16. doi: 10.1016/j.actaastro.2019.07.030
    [81] MIRKHALAF S M, EGGELS E H,VAN BEURDEN T J H, et al. A finite element based orientation averaging method for predicting elastic properties of short fiber reinforced composites[J]. Composites Part B: Engineering,2020,202:108388. doi: 10.1016/j.compositesb.2020.108388
    [82] DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology,2008,199(1-3):10-26. doi: 10.1016/j.jmatprotec.2007.10.060
    [83] YU H J, JIANG Y T, LU Y F, et al. Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying[J]. Journal of Non-Crystalline Solids,2019,505:79-86. doi: 10.1016/j.jnoncrysol.2018.10.039
    [84] 王衍飞, 张长瑞, 冯坚, 等. SiO2气凝胶/短切石英纤维多孔骨架复合材料的制备与性能[J]. 硅酸盐学报, 2009, 37(2):234-237.

    WANG Yanfei, ZHANG Changrui, FENG Jian, et al. Fabrication and properties of SiO2-aerogel/short silica fiber porous skeleton composite[J]. Journal of the Chinese Ceramic Society,2009,37(2):234-237(in Chinese).
    [85] ZHOU T, CHENG X D, PAN Y L, et al. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying[J]. Applied Surface Science,2018,437:321-328. doi: 10.1016/j.apsusc.2017.12.146
    [86] 马佳, 沈晓冬, 崔升, 等. 纤维增强二氧化硅气凝胶复合材料的制备和低温性能[J]. 材料导报, 2015, 29(20):43-46,63.

    MA Jia, SHEN Xiaodong, CUI Sheng, et al. Preparation and low-temperature properties of fiber reinforced SiO2 aerogel composites[J]. Materials Reports,2015,29(20):43-46,63(in Chinese).
    [87] HUNG W C, HORNG R S, SHIA R G. Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites[J]. Journal of Sol-Gel Science and Technology,2021,97(2):414-421. doi: 10.1007/s10971-020-05444-3
    [88] TIAN J Q, SHAFI S, TAN H J, et al. Mechanical and thermal-insulating performance of silica aerogel enhanced jointly with glass fiber and fumed silica by a facile compressing technique[J]. Chemical Physics Letters,2020,739:136950. doi: 10.1016/j.cplett.2019.136950
    [89] 王小雅, 曹云峰. 新型纤维材料—陶瓷纤维[J]. 纤维素科学与技术, 2012, 20(1):79-85. doi: 10.3969/j.issn.1004-8405.2012.01.012

    WANG X Y, CAO Y F. Ceramic fiber as a new material[J]. Journal of Cellulose Science and Technology,2012,20(1):79-85(in Chinese). doi: 10.3969/j.issn.1004-8405.2012.01.012
    [90] 高庆福, 冯坚, 张长瑞, 等. 陶瓷纤维增强氧化硅气凝胶隔热复合材料的力学性能[J]. 硅酸盐学报, 2009, 37(1):1-5. doi: 10.14062/j.issn.0454-5648.2009.01.010

    GAO Qingfu, FENG Jian, ZHANG Changrui, et al. Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites[J]. Journal of the Chinese Ceramic Society,2009,37(1):1-5(in Chinese). doi: 10.14062/j.issn.0454-5648.2009.01.010
    [91] YANG X G, SUN Y T, SHI D Q, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science and Engineering: A,2011,528(13-14):4830-4836.
    [92] 米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3):635-643. doi: 10.13801/j.cnki.fhclxb.2014.03.015

    MI Chunhu, JIANG Yonggang, SHI Duoqi, et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Materiae Compositae Sinica,2014,31(3):635-643(in Chinese). doi: 10.13801/j.cnki.fhclxb.2014.03.015
    [93] DU D X, JIANG Y G, FENG J Z, et al. Facile synthesis of silica aerogel composites via ambient-pressure drying without surface modification or solvent exchange[J]. Vacuum,2020,173:109117. doi: 10.1016/j.vacuum.2019.109117
    [94] LI Z, CHENG X D, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing,2016,84:316-325. doi: 10.1016/j.compositesa.2016.02.014
    [95] ALMEIDA C M R, GHICA M E, RAMALHO A L, et al. Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments[J]. Journal of Materials Science,2021,56(24):13604-13619. doi: 10.1007/s10853-021-06142-3
    [96] YI Z H, YAN L W, ZHANG T, et al. Thermal insulated and mechanical enhanced silica aerogel nanocomposite with in-situ growth of mullite whisker on the surface of aluminum silicate fiber[J]. Composites Part A: Applied Science and Manufacturing,2020,136:105968. doi: 10.1016/j.compositesa.2020.105968
    [97] 罗丹, 龙丽娟, 秦舒浩, 等. 碳纤毡和硅酸铝纤维增强二氧化硅气凝胶的制备及性能[J]. 广州化学, 2022, 47(3):46-51. doi: 10.16560/j.cnki.gzhx.20220312

    LUO Dan, LONG Lijuan, QIN Shuhao, et al. Preparation and properties of silica aerogel reinforced with different fibers[J]. Guangzhou Chemistry,2022,47(3):46-51(in Chinese). doi: 10.16560/j.cnki.gzhx.20220312
    [98] 张丽娟, 王洋, 李文静, 等. 耐高温透波气凝胶复合材料性能[J]. 宇航材料工艺, 2015, 45(4):47-50, 53.

    ZHANG Lijuan, WANG Yang, LI Wenjing, et al. Properties of high temperature resistant wave-transparent aerogels composites[J]. Aerospace Materials & Technology,2015,45(4):47-50, 53(in Chinese).
    [99] SHAFI S, ZHAO Y P. Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation[J]. Journal of Porous Materials,2019,27(2):495-502.
    [100] MERILLAS B, LAMY-MENDES A, VILLAFAÑE F, et al. Polyurethane foam scaffold for silica aerogels: effect of cell size on the mechanical properties and thermal insulation[J]. Materials Today Chemistry,2022,26:101257. doi: 10.1016/j.mtchem.2022.101257
    [101] SONG Z H, ZHAO Y F, YUAN M, et al. Thermal insulation and moisture resistance of high-performance silicon aerogel composite foam ceramic and foam glass[J]. Advanced Engineering Materials,2022,24(8):2101508. doi: 10.1002/adem.202101508
    [102] 李婧, 黄洁, 章伊婷, 等. 负载相变微胶囊的三聚氰胺/二氧化硅柔性气凝胶[J]. 高分子材料科学与工程, 2022, 38(8):122-128. doi: 10.16865/j.cnki.1000-7555.2022.0172

    LI Jing, HUANG Jie, ZHANG Yiting, et al. Structure and properties of melamine/silicon dioxide flexible aerogels loaded with phase transition microcapsules[J]. Polymer Materials Science & Engineering,2022,38(8):122-128(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0172
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  720
  • HTML全文浏览量:  508
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-03-27
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回