留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔ZnO-MgO/羟基磷灰石复合材料的制备与体外生物学性能

王淇 朱斌 罗丽琳 孟增东 张玉勤

王淇, 朱斌, 罗丽琳, 等. 多孔ZnO-MgO/羟基磷灰石复合材料的制备与体外生物学性能[J]. 复合材料学报, 2022, 39(0): 1-10
引用本文: 王淇, 朱斌, 罗丽琳, 等. 多孔ZnO-MgO/羟基磷灰石复合材料的制备与体外生物学性能[J]. 复合材料学报, 2022, 39(0): 1-10
Qi WANG, Bin ZHU, Lilin LUO, Zengdong MENG, Yuqin ZHANG. Preparation and in vitro biological properties of porous ZnO-MgO/Hydroxyapatite biocomposites[J]. Acta Materiae Compositae Sinica.
Citation: Qi WANG, Bin ZHU, Lilin LUO, Zengdong MENG, Yuqin ZHANG. Preparation and in vitro biological properties of porous ZnO-MgO/Hydroxyapatite biocomposites[J]. Acta Materiae Compositae Sinica.

多孔ZnO-MgO/羟基磷灰石复合材料的制备与体外生物学性能

基金项目: 国家自然科学基金资助项目(31860264);云南省基础研究计划重点项目(2019FA029)
详细信息
    通讯作者:

    张玉勤,博士,教授,博士生导师,研究方向:生物医用材料 Tel:13708861766 E-mail: zyqkust@163.com

  • 中图分类号: TB332

Preparation and in vitro biological properties of porous ZnO-MgO/Hydroxyapatite biocomposites

  • 摘要: 为改善多孔羟基磷灰石(HA)生物复合材料的生物活性和成骨诱导能力,本文利用放电等离子烧结(SPS)技术制备了ZnO、MgO质量分数分别为1.3%、8.4%的多孔ZnO-MgO/HA生物复合材料,研究了不同烧结温度下多孔复合材料微观结构、孔隙特征、体外矿化及降解行为的变化规律并对比分析了活性陶瓷相加入对多孔HA材料体外生物学性能的影响及机理。结果表明:烧结后的多孔复合材料主要由HA相及ZnO、MgO相组成,烧结温度超过950℃后,出现了少量HA分解产物Ca3(PO4)2相;随烧结温度的升高,多孔复合材料孔隙率缓慢下降,孔径尺寸呈逐渐减小的趋势;不同烧结温度下多孔复合材料在模拟体液中均具有良好的类骨磷灰石形成能力,而降解率随温度提高先增大后减小;综合分析,950℃下制备的多孔ZnO-MgO/HA复合材料具有适宜的孔隙特征(孔隙率(34.7±0.2)%,孔径尺寸150~400 μm占比65.5%),同时与多孔HA材料相比,还具有优异的类骨磷灰石形成能力、高的降解率((11.3±0.2)%)和细胞增殖率((91.7±2.1)%)以及低的细胞凋亡率((2.3±0.2)%),表明ZnO和MgO活性陶瓷相的加入明显提高了多孔HA材料的成骨诱导能力与生物相容性。

     

  • 图  1  不同温度烧结下多孔ZnO-MgO/羟基磷灰石(HA)复合材料XRD图

    Figure  1.  XRD patterns of porous ZnO-MgO/Hydroxyapatite (HA) composites sintered at different temperatures

    图  2  不同烧结温度下多孔ZnO-MgO/HA复合材料纵切面形貌图及孔径尺寸分布图

    Figure  2.  Longitudinal section morphology and pore size distribution of porous ZnO-MgO/HA composites at different sintering temperatures ((a) 850℃; (b) 900℃ (c); 950℃; (d) 1000℃; (e) 1050℃)

    图  3  不同烧结温度下多孔ZnO-MgO/HA复合材料在模拟人工体液溶液中浸泡14天后的表面生物矿化形貌图及EDS点扫描分析图

    Figure  3.  SEM and EDS point scanning analysis of porous ZnO-MgO /HA composites soaked in simulated artificial body fluid solution for 14 days at different sintering temperatures ((a) 850℃; (b) 900℃ (c); 950℃; (d) 1000℃; (e) 1050℃; (f) EDS point scanning analysis diagram at the marker)

    图  4  多孔HA材料在模拟人工体液溶液(SBF)中浸泡14天后的表面生物矿化形貌图

    Figure  4.  SEM images of surface bio-mineralization of porous HA soaked in simulated artificial body fluid solution (SBF) for 14 days

    图  5  多孔ZnO-MgO/HA复合材料的体外矿化及降解机制

    Figure  5.  In vitro mineralization and degradation mechanism of porous ZnO-MgO /HA composites

    图  6  多孔HA材料及多孔ZnO-MgO/HA复合材料在模拟人工体液溶液中浸泡七周后降解率曲线图

    Figure  6.  Degradation curves of porous HA materials and porous ZnO-MgO /HA composites soaked in simulated artificial body fluid solution for seven weeks

    图  7  多孔HA材料及多孔ZnO-MgO/HA复合材料表面的MG63细胞增殖

    Figure  7.  MG63 cell proliferation on the surface of porous HA material and porous ZnO-MgO/HA composite under different incubation time(* rep-resent p<0.05, ** represent p<0.01) ((a) OD value; (b) cell viability)

    图  8  多孔HA材料及多孔ZnO-MgO/HA复合材料浸提液诱导MG63细胞凋亡散点统计图

    Figure  8.  Scatterplot of apoptosis induced by porous HA material and porous ZnO-MgO/HA composite extract of MG63 cells. (a) porous HA; (b) porous ZnO-MgO/HA;

    图  9  多孔HA材料及多孔ZnO-MgO/HA复合材料浸提液诱导MG63细胞凋亡率

    Figure  9.  Statistical diagram of apoptosis rate of MG63 cells induced by porous HA material and porous ZnO-MgO/HA composite extract(* represent p<0.05)

  • [1] 周廉. 中国生物医用材料科学与产业现状及发展战略研究[M]. 北京: 化学工业出版社, 2012.

    ZHOU Lian. Research on the current situation and development strategy of biomedical materials science and industry in China[M]. Beijing: Chemical Industry press, 2012(in Chinese).
    [2] SHAKIR M, JOLLY R, KHAN MS, et al. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: synthesis and in vitro studies[J]. International Journal of Biological Macromolecules,2015,80:282-292. doi: 10.1016/j.ijbiomac.2015.05.009
    [3] NandiNANDI SK, ROY S, MUKHERJEE P, et al. Orthopaedic applications of bone graft & graft substitutes: a review[J]. Indian Journal of Medical Research,2010,132:15-30.
    [4] AKRAM M, AHMED R, SHAKIR I, et al. Extracting hydroxyapatite and its precursors from natural resources[J]. Journal of Materials Science,2014,49:1461-1475. doi: 10.1007/s10853-013-7864-x
    [5] RATNAYAKE JTB, MUCALO M, DIAS GJ. 2017. Substituted hydroxyapatites for bone regeneration: A reviewof current trends[J]. Journal of Biomedical Materials Research Part B,2017,105B:1285-1299.
    [6] 侯泽敬, 赵景涛, 李嘉明. 医用钛钼合金的国内外研究概况[J]. 世界有色金属, 2017(10):130-131.

    HOU Zejing, ZHAO Jingtao, LI Jiaming. Domestic and foreign overview of biomedical porous TiMo alloy[J]. World Nonferrous Metals,2017(10):130-131(in Chinese).
    [7] 程瑶, 王星星, 汪大林. 硅掺杂纳米羟基磷灰石: 溶解度、抗折和抗压强度解析[J]. 中国组织工程研究, 2016, 20(3):435-440.

    CHENG Yao, WANG Xingxing, WANG Dalin. Silicon-doped nano-hydroxyapatite: solubility, anti-fracture and compressive strengths[J]. Chinese Journal of Tissue Engineering Research,2016,20(3):435-440(in Chinese).
    [8] 杨春蓉, 王迎军, 陈晓峰. 纳米羟基磷灰石/胶原/磷酸丝氨酸仿生复合骨组织工程支架材料的制备及表征[J]. 科学通报, 2013, 58(3):267-271. doi: 10.1360/csb2013-58-3-267

    YANG Chunrong, WANG Yingjun, CHEN Xiaofeng. Preparation and evaluation of biomimetric nano-hydroxyapatite-based composite scaffolds for bone-tissue engineering[J]. Chinese Science Bulletin,2013,58(3):267-271(in Chinese). doi: 10.1360/csb2013-58-3-267
    [9] MASTROGIACOMO M, MURAGLIA A, KOMLEV V, et al. Tissue engineering of bone: search for a better scaffold[J]. Chinese Journal of Tissue Engineering Research,2005,8:277-84.
    [10] 朱斌, 何远怀, 孟增东, 等. 多孔ZnO/羟基磷灰石生物复合材料的制备与性能[J]. 复合材料学报, 2019, 36(11):2637-2643.

    ZHU Bin, HE Yuanhuai, MENG Zengdong, et al. Fabrication and properties of porous ZnO/hydroxyapatite biocomposites[J]. Acta Materiae Compositae Sinica,2019,36(11):2637-2643(in Chinese).
    [11] YANG YC, CHEN CC, WANG JB, et al. Flame sprayed zinc doped hydroxyapatite coating with antibacterial and biocompatible properties[J]. Ceramic International,2017,43:S829-S835. doi: 10.1016/j.ceramint.2017.05.318
    [12] BODHAK S, BOSE S, BANDYOPADHYAY A. Influence of MgO, SrO, and ZnO dopantson electro-thermal polarization behavior and in vitro biological properties of hydroxyapatite ceramics[J]. Journal of the American Ceramic Society,2011,94(4):1281-1288. doi: 10.1111/j.1551-2916.2010.04228.x
    [13] LALA S, MAITY T N, SINGHA M, et al. Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying[J]. Ceramics International, 2017, 43(2):
    [14] CHEN S, SHI Y, ZHANG X, MA J. Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of compositescaffolds for bone regeneration[J]. Journal of Biomedical Materials Research,2019,107(11):2512-2521. doi: 10.1002/jbm.a.36757
    [15] YAN Qiushi. Research progress in spark plasma sintering[J]. Science and Technology Innovation Herald,2016,31(13):36-37.
    [16] SADEGHI B, CAVALIERE P. Spark plasma sintering: process fundamentals[M]. Berlin: Springer, 2019.
    [17] ZHANG Jiuxing, LIU Kegao, ZHOU Meiling. Development and application of spark plasma sintering[J]. Powder Metallurgy Technology,2002,20(3):129-134.
    [18] YAO TK, SCOTT S, XIN GQ, et al. Dense Iodoapatite Ceramics Consolidated by Low-Temperature Spark Plasma Sintering[J]. Journal of the American Ceramic Society,2015,98(12):3733-3739. doi: 10.1111/jace.13867
    [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16886.5-2017 医疗器械生物学评价 第5部分: 体外细胞毒性试验[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 16886.5-2017 Biological evaluation of medical devices-Part 5: In vitro cytotoxicity test[S]. Beijing: China Standards Press, 2017(in Chinese).
    [20] 唐旭. SPS制备多孔HA骨修复材料的孔隙特征与力学性能研究[D]. 昆明医科大学, 2014.

    TANG Xu. Study on preparation and biological properties of porous Strontium-doped Hydroxyapatite bone repair materials prepared by spark plasma sintering[D]. Kunming Medical University, 2014. (in Chinese)
    [21] WOODRUFF M, LANGE A, REICHERT C, et al. Bone tissue engineering: From bench tobedside[J]. Materials Today. 2012, 15: 430–435. 2008. (in Chinese)
    [22] LOH Q L, CHOONG C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. [J]. Tissue engineering. Part B, Reviews, 2013, 19(6):
    [23] EDWARD F, PAUL H, SPAOWEN M, et al. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells[J]. Biomaterials, 2003, 24(10):
    [24] 林开利. 纳米磷酸钙、硅酸钙及其复合生物与环境材料的制备和性能研究[D]. 华东师范大学, 2008.

    LIN Kaili. Preparation and properties of nano-sized calcium phosphate, calcium silicate and their composite biological and environmental materials[D]. East China Normal University,
    [25] MALEKI-GHALEH H, SIADATI M H, FALLAH A, et al. Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering[J]. International Journal of Molecular Sciences, 2021, 22(17):
    [26] 何远怀. 羟基磷灰石/Ti-13Nb-13Zr生物材料的制备和性能研究[D]. 昆明理工大学, 2018.

    He Yuanhuai. Preparation and properties of hydroxyapatite /Ti-13Nb-13Zr biomaterials [D]. Kunming University of Science and Technology, 2018. (in Chinese)
  • 加载中
计量
  • 文章访问数:  121
  • HTML全文浏览量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 录用日期:  2021-12-26
  • 修回日期:  2021-12-23
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回