留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生砂超高性能混凝土力学性能

张智 蔡自伟 李凌志 俞可权

张智, 蔡自伟, 李凌志, 等. 再生砂超高性能混凝土力学性能[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 张智, 蔡自伟, 李凌志, 等. 再生砂超高性能混凝土力学性能[J]. 复合材料学报, 2022, 40(0): 1-12
Zhi ZHANG, Ziwei CAI, Lingzhi LI, Kequan YU. Mechanical properties of recycled sand ultra-high performance concrete[J]. Acta Materiae Compositae Sinica.
Citation: Zhi ZHANG, Ziwei CAI, Lingzhi LI, Kequan YU. Mechanical properties of recycled sand ultra-high performance concrete[J]. Acta Materiae Compositae Sinica.

再生砂超高性能混凝土力学性能

基金项目: 华南理工大学亚热带建筑科学国家重点实验室开放研究项目(2021 ZB10);国家自然科学基金青年科学基金项目(52108243)
详细信息
    通讯作者:

    蔡自伟,博士生,研究方向为超高性能混凝土和超高韧性水泥基复合材料  E-mail: caiziwei@tongji.edu.cn

  • 中图分类号: TU528

Mechanical properties of recycled sand ultra-high performance concrete

  • 摘要: 超高性能混凝土(Ultra-high performance concrete, UHPC)因其优异的力学性能而广受关注。传统混凝土制备消耗了大量天然砂,导致天然砂供应短缺和价格上涨,增加了UHPC的制备成本,不利于UHPC保持稳定的力学性能。由建筑垃圾破碎生产的再生砂因其来源丰富,体量巨大,绿色环保,具有取代天然砂制备UHPC的潜力。为验证再生砂替代天然砂制备UHPC的可行性,本文研究了再生砂取代率、粒径和砂胶比等因素对UHPC的拉伸和压缩性能的影响。结果表明:再生砂UHPC仍具有较好的力学性能,随着再生砂取代率增大,再生砂UHPC的抗压强度、弹性模量和抗拉强度均逐渐减小;再生砂粒径与砂胶比对力学性能的影响甚微,当砂胶比从0.6增大到0.9时,弹性模量仅下降5.5%。本文建立了考虑再生砂掺量的UHPC静弹性模量计算公式,提出了再生砂UHPC棱柱体抗压强度与弹性模量的经验公式。再生砂UHPC具有成本低、性能高、绿色环保等特点,通过对其基本力学性能的表征,并建立相应的计算公式,为后续再生砂UHPC的结构应用奠定了基础。

     

  • 图  1  石英砂和再生砂:(a) 石英砂;(b) 0.30~1.18 mm 再生砂;(c) 1.18~2.36 mm 再生砂;(d) 2.36~4.75 mm 再生砂

    Figure  1.  Quartz sand and recycled sand: (a) Quartz sand; (b) 0.30-1.18 mm recycled sand; (c) 1.18-2.36 mm recycled sand; (d) 2.36-4.75 mm recycled sand

    图  2  拉伸试样几何尺寸 (单位:mm)

    Figure  2.  Geometric dimensions of tensile specimens (Unit: mm)

    图  3  试验装置:(a) 立方体抗压试验;(b) 棱柱体静弹性模量试验;(c) 棱柱体抗压试验;(d) 直接拉伸试验

    Figure  3.  Test devices: (a) Cube compression test; (b) Static elastic modulus test; (c) Prismatic compression test; (d) Direct tension test

    图  4  不同UHPC配合比的立方体抗压强度:(a) 不同取代率;(b) 不同粒径;(c) 不同砂胶比

    Figure  4.  Compressive strength of different UHPC mixtures: (a) Different substitution rates; (b) Different particle sizes; (c) Different sand binder ratios

    图  5  不同UHPC配合比的棱柱体受压静弹性模量:(a) 不同取代率;(b) 不同粒径;(c) 不同砂胶比

    Figure  5.  Elastic modulus of different UHPC mixtures: (a) Different substitution rates; (b) Different particle sizes; (c) Different sand binder ratios

    图  6  再生砂UHPC动弹性模量与静弹性模量:(a) 不同取代率;(b) 不同砂胶比;(c) 不同粒径

    Figure  6.  Elastic modulus and static elastic modulus of recycled sand UHPC: (a) Different substitution rates; (b) Different sand binder ratios; (c) Different particle sizes

    图  7  再生砂UHPC计算模型:(a) 计算结果与试验结果对比;(b) 计算简图

    Figure  7.  Recycled sand UHPC analysis model: (a) Comparison of calculated results and test results; (b) Calculation sketch

    图  8  再生砂UHPC棱柱体应力-应变曲线:(a) 不同替代率;(b) 不同粒径;(c) 不同砂胶比;(d)棱柱体破坏模式

    Figure  8.  Prismatic compressive stress-strain curves of recycled sand UHPC: (a) Different substitution rates; (b) Different particle sizes; (c) Different sand binder; (d) Compressive failure of prism

    图  9  棱柱体抗压强度及峰值荷载对应应变:(a) 不同取代率;(b) 不同粒径;(c) 不同砂胶比;(d) 立方体与棱柱体抗压强度比值

    Figure  9.  Prismatic compressive strength and strain corresponding peak load: (a) Different substitution rates; (b) Different particle sizes; (c) Different sand binder ratios; (d) Ratio of cube to prism compressive strength

    图  10  再生砂UHPC棱柱体抗压强度与弹性模量

    Figure  10.  Prismatic compressive strength and elastic modulus of recycled sand UHPC

    图  11  再生砂UHPC拉伸性能对比:(a) 不同取代率受拉应力-应变曲线;(b) 受拉断面;(c) 不同取代率;(d) 不同粒径;(e) 不同砂胶比

    Figure  11.  Comparison of tensile stress of recycled sand UHPC: (a) Tensile stress-strain curves of different substitution rates; (b) Tensile section; (c) Different substitution rates; (d) Different particle sizes; (e) Different sand binder ratios

    图  12  再生砂UHPC拉压强度标准化对比:(a) 不同取代率;(b) 不同砂胶比;(c) 不同粒径

    Figure  12.  Normalization comparison of tensile and compressive strength of recycled sand UHPC: (a) Different substitution rates; (b) Different sand binder ratios; (c) Different particle sizes

    图  13  UHPC中再生砂和钢纤维分布示意图:(a) 0.30~1.18 mm和1.18~2.36 mm;(b) 2.36~4.75 mm

    Figure  13.  Sketches of steel fiber and recycled sand in UHPC: (a) 0.30-1.18 mm and 1.18-2.36 mm; (b) 2.36-4.75 mm

    表  1  超高性能混凝土(UHPC)配合比(质量比)

    Table  1.   Propotion of mixture of ultra-high performance concrete (UHPC) (Mass ratio)

    MixtureIDCementSilica fumeFly
    ash
    Quartz
    flour
    Quartz
    sand
    Recycled sandWaterSuperp
    lasticizer
    Substitu
    tion rate/%
    Sand
    binder
    ratio
    Recycled sand size/mm
    U01.000.250.250.251.75-0.280.0160--
    U251.000.250.250.251.310.390.280.01625-1.18-2.36
    U501.000.250.250.250.880.780.280.01650-1.18-2.36
    U100-0.9-Z1.000.250.250.25-1.560.280.0161000.91.18-2.36
    U100-0.8-Z1.000.250.250.25-1.400.280.0151000.81.18-2.36
    U100-0.6-Z1.000.250.250.25-1.050.280.0151000.61.18-2.36
    U100-0.8-X1.000.250.250.25-1.400.280.0151000.80.30-1.18
    U100-0.8-C1.000.250.250.25-1.400.280.0141000.82.36-4.75
    Notes: Z—Medium; X—Fine; C—Coarse.
    下载: 导出CSV
  • [1] ZHOU M, WU Z M, OUYANG X, et al. Mixture design methods for ultra-high-performance concrete-a review[J]. Cement & Concrete Composites,2021:124.
    [2] RAHEEM A H A, MAHDY M, MASHALY A A. Mechanical and fracture mechanics properties of ultra-high-performance concrete[J]. Construction and Building Materials,2019,213:561-566. doi: 10.1016/j.conbuildmat.2019.03.298
    [3] YANG R, YU R, SHUI Z H, et al. Feasibility analysis of treating recycled rock dust as an environmentally friendly alternative material in Ultra-High Performance Concrete (UHPC)[J]. Journal of Cleaner Production,2020,258:120673. doi: 10.1016/j.jclepro.2020.120673
    [4] JUENGER M C G, SIDDIQUE R. Recent advances in understanding the role of supplementary cementitious materials in concrete [J]. Cement and Concrete Research, 2015, 78(Part A): 71-80.
    [5] DING M X, YU R, FENG Y, et al. Possibility and advantages of producing an ultra-high performance concrete (UHPC) with ultra-low cement content[J]. Construction and Building Materials,2021,273:122023. doi: 10.1016/j.conbuildmat.2020.122023
    [6] 冯滔滔, 蒋金洋, 刘志勇, 等. 机制砂超高性能混凝土的冲击压缩力学性能[J]. 硅酸盐学报, 2020, 48(8):1177-1187.

    FENG Taotao, JIANG Jinyang, LIU Zhiyong, et al. Impact compression mechanical properties of ultra-high performance concere with manufactured sand[J]. Journal of the Chinese Ceramic Society,2020,48(8):1177-1187(in Chinese).
    [7] 彭术, 陈浩, 水中和, 等. 废弃混凝土再生粉制备超高性能混凝土基体的性能研究[J]. 硅酸盐通报, 2019, 38(7):2125-2130.

    PENG Shu, CHEN Hao, SHUI Zhonghe, et al. Properties of ultra-high performance concrete matrix prepared with powder of waste concrete[J]. Bulletin of the Chinese Ceramic Society,2019,38(7):2125-2130(in Chinese).
    [8] 范定强, 水中和, 余睿, 等. 铅锌尾矿回收制备环保型超高性能混凝土研究[J]. 硅酸盐通报, 2018, 37(7):2231-2236.

    FAN Dingqiang, SHUI Zhonghe, YU Rui, et al. Preparation of eco-friendly ultra-high performance concrete by lead-zinc tailings[J]. Bulletin of the Chinese Ceramic Society,2018,37(7):2231-2236(in Chinese).
    [9] SOLIMAN N A, TAGNIT-HAMOU A. Using glass sand as an alternative for quartz sand in UHPC[J]. Construction and Building Materials,2017,145:243-252. doi: 10.1016/j.conbuildmat.2017.03.187
    [10] JIAO Y B, ZHANG Y, GUO M, et al. Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material[J]. Journal of Cleaner Production,2020,277:123501. doi: 10.1016/j.jclepro.2020.123501
    [11] PEZESHKIAN M, DELNAVAZ A, DELNAVAZ M. Development of UHPC mixtures using natural zeolite and glass sand as replacements of silica fume and quartz sand [J]. European Journal of Environmental and Civil Engineering, 2019.
    [12] WANG X P, YU R, SHUI Z H, et al. Mix design and characteristics evaluation of an eco-friendly ultra-high performance concrete incorporating recycled coral based materials[J]. Journal of Cleaner Production,2017,165:70-80. doi: 10.1016/j.jclepro.2017.07.096
    [13] SMARZEWSKI P. Mechanical properties of ultra-high performance concrete with partial utilization of waste foundry sand[J]. Buildings,2020,10(1):11. doi: 10.3390/buildings10010011
    [14] SHEN P L, ZHENG H B, XUAN D X, et al. Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete[J]. Cement and Concrete Composites,2020,114:103814. doi: 10.1016/j.cemconcomp.2020.103814
    [15] TAM V W Y, SOOMRO M, EVANGELISTA A C J. A review of recycled aggregate in concrete applications (2000-2017)[J]. Construction and Building Materials,2018,172:272-292. doi: 10.1016/j.conbuildmat.2018.03.240
    [16] 陈守开, 杨晴, 刘秋常, 等. 再生骨料透水混凝土强度及透水性能试验[J]. 农业工程学报, 2017, 33(15):141-146. doi: 10.11975/j.issn.1002-6819.2017.15.018

    CHEN Shoukai, YANG Qing, LIU Qiuchang, et al. Experiment on strength and permeability of recycled aggregate pervious concrete[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(15):141-146(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.15.018
    [17] 鲁官友. 建筑垃圾资源化产业发展研究−以中建丰台项目为例 [D]. 天津: 天津大学, 2018.

    LU Guanyou. Study on the development of construction waste resource industry−a case study of Fengtai project of China state construction engineering corporation CSCEC [D]. Tianjin: Tianjin University, 2018. (in Chinese).
    [18] 孙家瑛, 肖天翔, 陆阳升. 再生细骨料对混凝土塑性收缩开裂性能影响[J]. 建筑材料学报, 2014, 17(3):475-480. doi: 10.3969/j.issn.1007-9629.2014.03.019

    SUN Jiaying, XIAO Tianxiang, LU Yangsheng. Effect of recyced fine aggregate on plastic shrinkage cracking properties of concrete[J]. Journal of Building Materials,2014,17(3):475-480(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.03.019
    [19] TANG Yunchao, FENG Wanhui, CHEN Zheng, et al. Fracture behavior of a sustainable material: recycled concrete with waste crumb rubber subjected to elevated temperatures[J]. Journal of Cleaner Production,2021:318.
    [20] FENG Wanhui, TANG Yunchao, ZHANG Yunqi, et al. Partially fly ash and nano-silica incorporated recycled coarse aggregate based concrete: constitutive model and enhancement mechanism[J]. Journal of Materials Research and Technology,2022,17:192-210. doi: 10.1016/j.jmrt.2021.12.135
    [21] 李秋义, 岳公冰, 郭远新. 再生混凝土性能调控与配合比设计 [M]. 北京: 中国建筑工业出版社, 2019: 1-3

    LI Qiuyi, YUE Gongbing, GUO Yuanxin. Property regulation and mix proportion design of recycled concrete [M]. Beijing: China Architecture & Building Press. 2019: 1-3. (in Chinese)
    [22] 褚洪岩, 蒋金洋, 李荷, 等. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24):24029-24033. doi: 10.11896/cldb.20020056

    CHU Hongyan, JIANG Jinyang, LI He, et al. Effects of eco-friendly fine aggregates on mechanical properties of ultra-high performance concrete[J]. Materials Reports,2020,34(24):24029-24033(in Chinese). doi: 10.11896/cldb.20020056
    [23] 葛晓丽, 褚洪岩. 再生砂超高性能混凝土力学性能研究[J]. 建筑材料学报, 2020, 23(4):810-815. doi: 10.3969/j.issn.1007-9629.2020.04.011

    GE Xiaoli, CHU Hongyan. Machanical properties of ultra-high performance concrete with recycled sand[J]. Journal of Building Materials,2020,23(4):810-815(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.04.011
    [24] 陈志武. 饱和面干再生细骨料对超高性能混凝土流动度及强度的影响[J]. 硅酸盐通报, 2021, 40(5):1503-1509.

    CHEN Zhiwu. Influences of saturated surface-dry recycled fine aggregate on fluidity and strength of ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society,2021,40(5):1503-1509(in Chinese).
    [25] ZHOU Y W, GUO D C, XING F, et al. Multiscale mechanical characteristics of ultra-high performance concrete incorporating different particle size ranges of recycled fine aggregate[J]. Construction and Building Materials,2021:307.
    [26] YU L Z, WU R X. Using graphene oxide to improve the properties of ultra-high-performance concrete with fine recycled aggregate[J]. Construction and Building Materials,2020,259:120657. doi: 10.1016/j.conbuildmat.2020.120657
    [27] CHU H Y, ZHANG Y, WANG F J, et al. Effect of graphene oxide on mechanical properties and durability of ultra-high-performance concrete prepared from recycled sand[J]. Nanomaterials,2020,10(9):1718. doi: 10.3390/nano10091718
    [28] 中华人民共和国建设部(标准制定单位). 普通混凝土用砂、石质量及检验方法标准: JGJ 52-2006[S]. 北京: 中国建筑工业出版社, 2007.

    Minstry of Housing and Urban-Rural Development of the Peoples's Republic of China. Standard for technical requirements and test method of sand and crushed stone(or gravel)for ordinary concrete JGJ 52-2006. Beijing: China Architecture & Building Press, 2007(in Chinese)
    [29] 中华人民共和国住房和城乡建设部(标准制定单位). 混凝土物理力学性能试验方法标准 GB/T 50081-2019 [S]. 北京: 中国建筑工业出版社, 2019.

    Minstry of Housing and Urban-Rural Development of the Peoples's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081-2019 Beijing: China Architecture & Building Press, 2019(in Chinese)
    [30] 中华人民共和国住房和城乡建设部(标准制定单位). 活性粉末混凝土: GB/T 31387-2015[S]. 北京: 中国标准出版社, 2015.

    Minstry of Housing and Urban-Rural Development of the Peoples's Republic of China. Reactive powder concrete: GB/T 31387-2015. Beijing: China Standards Press, 2015(in Chinese)
    [31] 中国建筑材料联合会(标准制定单位). 超高性能混凝土基本性能与试验方法: T/CBMF 37-2018、T/CCPA 7-2018[S]. 2019.

    Chian Building Materials Federation. Fundamental characteristics and test methods of ultra-high performance concrete: T/CBMF 37-2018、T/CCPA 7-2018. 2019(in Chinese)
    [32] 李秋义, 李艳美, 毛高峰, 等. 再生细骨料种类和取代量对混凝土强度的影响[J]. 青岛理工大学学报, 2008, 29(3):10-15. doi: 10.3969/j.issn.1673-4602.2008.03.002

    LI Qiuyi, LI Yan-mei, MAO Gao-feng, et al. Influence on concrete compressive strength by type and replaced amount of recycled fine aggregate[J]. Journal of Qingdao Technological University,2008,29(3):10-15(in Chinese). doi: 10.3969/j.issn.1673-4602.2008.03.002
    [33] 郑宇博, 杨丽辉, 陈宇, 等. 混杂纤维增强水泥砂浆砂胶比与力学性能的关系[J]. 混凝土与水泥制品, 2019(08):45-49.

    ZHENG Yubo, YANG Lihui, CHEN Yu, et al. The relationship between sand-binder ratio and mechanical performance of hydrid fiber reinforced cement mortar[J]. Chian Concrete and Cement Products,2019(08):45-49(in Chinese).
    [34] 周静海, 何海进, 孟宪宏, 等. 再生混凝土基本力学性能试验[J]. 沈阳建筑大学学报(自然科学版), 2010, 26(3):464-468.

    ZHOU Jinghai, HE Haijing, MENG Xianhong, et al. Basic mechanical properties of recycled concrete experimaental study[J]. Journal of Shenyang Jianzhu University,2010,26(3):464-468(in Chinese).
    [35] WASHER G, FUCHS P, GRAYBEAL B A, et al. Ultrasonic testing of reactive powder concrete[J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2004,51(2):193-201. doi: 10.1109/TUFFC.2004.1320767
    [36] 方志, 周传波. 活性粉末混凝土动静弹性模量试验研究[J]. 铁道学报, 2018, 40(9):128-134. doi: 10.3969/j.issn.1001-8360.2018.09.018

    FANG Zhi, ZHOU Chuanbo. Experimental study on the elastic modulus of reactive powder concrete[J]. Journal of the China Railway Socity,2018,40(9):128-134(in Chinese). doi: 10.3969/j.issn.1001-8360.2018.09.018
    [37] 欧阳雪, 史才军, 史金华, 等. 超高性能混凝土受压力学性能及其弹性模量预测[J]. 硅酸盐学报, 2021, 49(2):296-304.

    OUYANG Xue, SHI Caijun, SHI Jinhua, et al. Compressive mechanical properties and prediction for elastic modulus of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society,2021,49(2):296-304(in Chinese).
    [38] 王秋维, 史庆轩, 陶毅, 等. 活性粉末混凝土抗压力学性能及指标取值[J]. 建筑材料学报, 2020, 23(6):1381-1389. doi: 10.3969/j.issn.1007-9629.2020.06.017

    WANG Qiuwei, SHI Qingxuan, TAO Yi, et al. Compressive mechanical properties and indexs of reactive powder concrete[J]. Journal of Building Materials,2020,23(6):1381-1389(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.06.017
    [39] Eurocode 2: Design of concrete structures- Part 1-1: General rules and rules for buildings: [S]. European Committee for Standardization (CEN), 2004: 110-115.
    [40] GRAYBEAL B A. Compressive behavior of ultra-high-performance fiber-reinforced concrete[J]. Aci Materials Journal,2007,104(2):146-152.
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 录用日期:  2022-04-23
  • 修回日期:  2022-04-09
  • 网络出版日期:  2022-05-13

目录

    /

    返回文章
    返回