留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法

吕柄熠 王时玉 校金友 文立华 侯晓

吕柄熠, 王时玉, 校金友, 等. 基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法[J]. 复合材料学报, 2023, 40(4): 2355-2364. doi: 10.13801/j.cnki.fhclxb.20220812.001
引用本文: 吕柄熠, 王时玉, 校金友, 等. 基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法[J]. 复合材料学报, 2023, 40(4): 2355-2364. doi: 10.13801/j.cnki.fhclxb.20220812.001
LV Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2355-2364. doi: 10.13801/j.cnki.fhclxb.20220812.001
Citation: LV Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2355-2364. doi: 10.13801/j.cnki.fhclxb.20220812.001

基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法

doi: 10.13801/j.cnki.fhclxb.20220812.001
基金项目: 国家自然科学基金重点项目(52090051);国家自然科学基金委员会-中国航天科技集团有限公司航天先进制造技术研究联合基金(U1837601);陕西省重点研发计划(2021ZDLGY11-02);国家自然科学基金青年基金项目(11902255)
详细信息
    通讯作者:

    校金友,博士,教授,博士生导师,研究方向为计算结构力学、复合材料结构设计 E-mail: xiaojy@nwpu.edu.cn

    文立华,博士,教授,博士生导师,研究方向为飞行器结构设计 E-mail: Lhwen@nwpu.edu.cn

  • 中图分类号: TB332

A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model

Funds: Key Project of National Natural Science Foundation of China (52090051); The Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China and China Aerospace Science and Technology Corporation (U1837601); Key Research and Development Plan of Shaanxi Province (2021ZDLGY11-02); Youth Fund Project of National Natural Science Foundation of China (11902255)
  • 摘要: 热塑性复合材料预制体的赋形质量直接影响结构件的制造质量。由于热塑性基体具有较高的熔融温度和黏度,赋形工艺温度设计不合理会导致褶皱等赋形缺陷,给热塑性复合材料结构高质量成型带来了挑战。现有的热塑性预浸料热成型研究主要基于连续介质力学、离散元、半离散元法,通过建立多机制耦合的本构模型分析热塑性预浸料的各向异性大变形行为,未充分考虑工艺调控对赋形宏观变形过程中褶皱缺陷的影响。发展了一种热塑性预浸料宽温域赋形褶皱缺陷仿真方法。通过表征热塑性机织物预浸料在不同温度、载荷下的力学性能,获取宽温域热塑性预浸料本构参数,基于非正交本构模型,提出了温度对热塑性预浸料赋形褶皱缺陷的作用规律,揭示了赋形过程中宽温域褶皱缺陷的变形机制,获得了赋形温度优化调控方案。研究结果表明:褶皱缺陷的萌生和演化过程由不同温度下的面内剪切和压缩变形行为共同影响,预浸料的褶皱缺陷变形程度随温度的增加而减弱,非正交本构模型的模拟结果与实验结果基本一致。

     

  • 图  1  CF/PC预浸料偏轴拉伸试样

    Figure  1.  Bias-extension specimen of CF/PC prepreg

    图  2  (a) 单轴拉伸实验;(b) 偏轴拉伸实验

    Figure  2.  (a) Uniaxial tension experiment; (b) Bias-extension experiment

    图  3  弯曲实验环境

    Figure  3.  Bending experiment environment

    图  4  各温度下CF/PC预浸料的单轴拉伸实验应力-应变曲线

    Figure  4.  Stress-strain curves of uniaxial tension experiments of CF/PC prepreg at different temperatures

    图  5  各温度下CF/PC预浸料偏轴拉伸实验纤维剪切角变化

    Figure  5.  Variation of fiber shear angle in bias-extension experiments of CF/PC prepreg at different temperatures

    图  6  升温过程中CF/PC的预浸料弯曲变形图:(a) 25℃;(b) 150℃;(c) 250℃

    Figure  6.  Bending deformation diagram of CF/PC prepreg during heating process: (a) 25℃; (b) 150℃; (c) 250℃

    图  7  各温度下CF/PC预浸料悬臂梁弯曲实验结果

    Figure  7.  Bending experiment results of cantilever beam for CF/PC prepreg at different temperatures

    图  8  非正交本构模型不同坐标系定义

    Figure  8.  Definition of different coordinate systems for non-orthogonal models

    $f_1^0$, $f_2^0$—Prepreg initial yarn orientation; $e_1^0$, $e_2^0$—Initial local corotation coordinate system orientation; e1, e2—Direction of the local co-rotating coordinate system after deformation; f1, f2—Prepreg yarn orientation after deformation; α—Angle between f1 and e1; β—Shear angle; m1—Bisector of e1 and e2

    图  9  单层CF/PC预浸料的单穹顶结构赋形模型示意图

    Figure  9.  Schematic diagram of the preforming model of the single dome structure of CF/PC monolayer prepreg

    图  10  (a) CF/PC赋形试件;(b) 单穹顶实验装置

    Figure  10.  (a) CF/PC shaped specimen; (b) Single-dome experimental device

    图  11  CF/PC预浸料各温度下褶皱缺陷仿真与实验对比

    Figure  11.  Comparison of wrinkle defect in simulation and experiment results of CF/PC prepreg at each temperature

    图  12  纤维剪切角测量路径

    Figure  12.  Measurement path of fiber shear angle

    表  1  平纹碳纤维/聚碳酸酯(CF/PC)机织物预浸料参数

    Table  1.   Parameters of plain weave carbon fiber/polycarbonate (CF/PC) woven fabric prepreg

    ParameterFabric
    WeavePlain
    Density/(kg·mm−3)1.461×10−6
    Thickness/mm0.35
    Fiber volume fraction/vol%45
    Glass transition temperature Tg/℃150
    Melting point Tm/℃220
    Fabric image
    下载: 导出CSV

    表  2  纤维剪切角变化拟合曲线

    Table  2.   Fitting curve of fiber shear angle change

    Temperature/℃Curve fitting parameterCoefficient of determination R2
    200$y=-74.21 x^6+216.57 x^5-275.98 x^4+184.66 x^3-60.72 x^2+10.92 x$0.99996
    210$y=-7.86 x^6+48.83 x^5-99.01 x^4+85.52 x^3-32.09 x^2+6.84 x$0.99998
    220$y=106.35 x^6-252.89 x^5+208.95 x^4-66.94 x^3+4.25 x^2+2.92 x$0.99998
    230$y=74.43 x^6-185.49 x^5+162.48 x^4-57.72 x^3+6.17 x^2+1.83 x$0.99997
    240$y=76.99 x^6-189.97 x^5+169.8 x^4-66.76 x^3+10.68 x^2+0.97 x $0.99999
    250$y=66.99 x^6-168.78 x^5+155.42 x^4-64.17 x^3+11.36 x^2+0.64 x $0.99998
    下载: 导出CSV

    表  3  CF/PC预浸料拉深距离仿真与实验对比

    Table  3.   Comparison of draw-in values from experiment and simulation of CF/PC prepreg

    Temperature/℃X direction/mmY direction/mm
    ExperimentSimulationExperimentSimulation
    20028.728.628.828.4
    21029.429.329.529.5
    22029.629.729.629.2
    23029.529.529.729.6
    24029.729.729.829.7
    25029.829.929.929.6
    下载: 导出CSV

    表  4  纤维剪切角仿真与实验对比(210℃)

    Table  4.   Comparison of fiber shear angle values from experiment and simulation (210℃)

    PositionShear angle/(°)Error/%
    ExperimentSimulation
    189.889.90.11
    279.378.51.00
    368.465.64.10
    448.746.93.70
    589.889.90.11
    689.589.60.12
    786.386.10.23
    下载: 导出CSV
  • [1] 洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报, 2019, 36(12):2822-2832. doi: 10.13801/j.cnki.fhclxb.20190304.003

    HONG Qi, SHI Yaoyao, LU Danni, et al. Multi-response parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology[J]. Acta Materiae Compositae Sinica,2019,36(12):2822-2832(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190304.003
    [2] TATSUNO D, YONEYAMA T, KAWAMOTO K, et al. Effect of cooling rate on the mechanical strength of carbon fiber-reinforced thermoplastic sheets in press forming[J]. Journal of Materials Engineering and Performance,2017,26(7):3482-3488. doi: 10.1007/s11665-017-2664-0
    [3] GONG Y, SONG Z, NING H, et al. A comprehensive review of characterization and simulation methods for thermo-stamping of 2D woven fabric reinforced thermoplastics[J]. Composites Part B: Engineering,2020,203:108462. doi: 10.1016/j.compositesb.2020.108462
    [4] DENIS Y, MORESTIN F, HAMILA N. A hysteretic model for fiber-reinforced composites at finite strains: Fractional derivatives, computational aspects and analysis[J]. Computational Materials Science,2020,181:109716. doi: 10.1016/j.commatsci.2020.109716
    [5] GUZMAN-MALDONADO E, HAMILA N, BOISSE P, et al. Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites[J]. Composites Part A: Applied Science and Manufacturing,2015,78:211-222. doi: 10.1016/j.compositesa.2015.08.017
    [6] KÄRGER L, GALKIN S, DÖRR D, et al. Capabilities of macroscopic forming simulation for large-scale forming processes of dry and impregnated textiles[J]. Procedia Manufacturing,2020,47:140-147. doi: 10.1016/j.promfg.2020.04.155
    [7] VAN WEST B P, PIPES R B, KEEFE M. A simulation of the draping of bidirectional fabrics over arbitrary surfaces[J]. Journal of the Textile Institute,1990,81(4):448-460. doi: 10.1080/00405009008658722
    [8] JAUFFRÈS D, SHERWOOD J A, MORRIS C D, et al. Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming[J]. International Journal of Material Forming,2010,3(2):1205-1216.
    [9] HAMILA N, BOISSE P. Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element[J]. Composites Part B: Engineering,2008,39(6):999-1010. doi: 10.1016/j.compositesb.2007.11.008
    [10] KHAN M A, MABROUKI T, VIDAL-SALLÉ E, et al. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[J]. Journal of Materials Processing Technology,2010,210(2):378-388. doi: 10.1016/j.jmatprotec.2009.09.027
    [11] PENG X Q, CAO J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[J]. Composites part A: Applied Science and manufacturing,2005,36(6):859-874. doi: 10.1016/j.compositesa.2004.08.008
    [12] PENG X, DING F. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation[J]. Composites Part A: Applied Science and Manufacturing,2011,42(4):400-407. doi: 10.1016/j.compositesa.2010.12.014
    [13] LIANG B, HAMILA N, PEILLON M, et al. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations[J]. Composites Part A: Applied Science and Manufacturing,2014,67:111-122. doi: 10.1016/j.compositesa.2014.08.020
    [14] 张衡. 编织碳纤维增强热塑性复合材料叠层模型及热冲压工艺研究[D]. 上海: 上海交通大学, 2017.

    ZHANG Heng. Lamination model and thermoforming process investigation of carbon woven fabric reinforced thermoplastic composites[D]. Shanghai: Shanghai Jiao Tong University, 2017(in Chinese).
    [15] 李哲夫, 谈源, 张俭, 等. 热模压预成型工艺参数对复合材料帽型长桁质量的影响[J]. 复合材料学报, 2021, 38(10):3270-3280. doi: 10.13801/j.cnki.fhclxb.20201215.004

    LI Zhefu, TAN Yuan, ZHANG Jian, et al. Effects of hot stamp forming process parameters on quality of the hat-shaped structure preforms of composites[J]. Acta Materiae Compositae Sinica,2021,38(10):3270-3280(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201215.004
    [16] 付掌印, 林大钧. 不可展曲面近似展开方法的合理性判断标准[J]. 工程图学学报, 2005, 26(6):36-40.

    FU Zhangyin, LIN Dajun. Some criteria for evaluating the methods of developing undevelopable curved surface[J]. Journal of Engineering Graphics,2005,26(6):36-40(in Chinese).
    [17] WANG P, HAMILA N, PINEAU P, et al. Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test[J]. Journal of Thermoplastic Composite Materials,2014,27(5):679-698. doi: 10.1177/0892705712454289
    [18] BOISSE P, HAMILA N, GUZMAN-MALDONADO E, et al. The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: A review[J]. International Journal of Material Forming,2017,10(4):473-492. doi: 10.1007/s12289-016-1294-7
    [19] HARRISON P, CLIFFORD M J, LONG A C. Shear characterisation of viscous woven textile composites: A comparison between picture frame and bias extension experiments[J]. Composites Science and Technology,2004,64(10-11):1453-1465. doi: 10.1016/j.compscitech.2003.10.015
    [20] BOISSE P, HAMILA N, VIDAL-SALLÉ E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology,2011,71(5):683-692. doi: 10.1016/j.compscitech.2011.01.011
    [21] 中国纺织工业协会. 纺织品 弯曲性能的测定 第1部分: 斜面法: GB/T 18318.1—2009[S]. 北京: 中国标准出版社, 2009.

    China National Textile and Apparel Council. Textiles—Determination of bending behavior—Part 1: Incline method: GB/T 18318.1—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [22] MACHADO M, MURENU L, FISCHLSCHWEIGER M, et al. Analysis of the thermomechanical shear behaviour of woven-reinforced thermoplastic-matrix composites during forming[J]. Composites Part A: Applied Science and Manufacturing,2016,86:39-48. doi: 10.1016/j.compositesa.2016.03.032
    [23] 李林秀. 热塑性复合材料热冲压成型褶皱缺陷的形成机理研究[D]. 上海: 东华大学, 2020.

    LI Linxiu. Study on the formation mechanism of wrinkle defects in hot stamping of thermoplastic composites[D]. Shanghai: Donghua University, 2020(in Chinese).
    [24] ZHANG W, REN H, LIANG B, et al. A non-orthogonal material model of woven composites in the preforming process[J]. CIRP Annals,2017,66(1):257-260. doi: 10.1016/j.cirp.2017.04.112
    [25] BOISSE P, GASSER A, HIVET G. Analyses of fabric tensile behaviour: Determination of the biaxial tension-strain surfaces and their use in forming simulations[J]. Composites Part A: Applied Science and Manufacturing,2001,32(10):1395-1414. doi: 10.1016/S1359-835X(01)00039-2
    [26] CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing,2008,39(6):1037-1053. doi: 10.1016/j.compositesa.2008.02.016
    [27] LIANG B, SASA G A O, ZHANG W. An integrated preforming-performance model for high-fidelity performance analysis of cured woven composite part with non-orthogonal yarn angles[J]. Chinese Journal of Aeronautics,2022,35(6):367-378. doi: 10.1016/j.cja.2021.09.019
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  809
  • HTML全文浏览量:  536
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-07-22
  • 录用日期:  2022-08-05
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回