留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同应变速率下CFRP约束混凝土方柱的力学性能

赵辉 曹玉贵 王攀峰 赵立峰

赵辉, 曹玉贵, 王攀峰, 等. 不同应变速率下CFRP约束混凝土方柱的力学性能[J]. 复合材料学报, 2022, 39(10): 4847-4855. doi: 10.13801/j.cnki.fhclxb.20211012.004
引用本文: 赵辉, 曹玉贵, 王攀峰, 等. 不同应变速率下CFRP约束混凝土方柱的力学性能[J]. 复合材料学报, 2022, 39(10): 4847-4855. doi: 10.13801/j.cnki.fhclxb.20211012.004
ZHAO Hui, CAO Yugui, WANG Panfeng, et al. Mechanical behavior of CFRP confined concrete square column under different strain rates[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4847-4855. doi: 10.13801/j.cnki.fhclxb.20211012.004
Citation: ZHAO Hui, CAO Yugui, WANG Panfeng, et al. Mechanical behavior of CFRP confined concrete square column under different strain rates[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4847-4855. doi: 10.13801/j.cnki.fhclxb.20211012.004

不同应变速率下CFRP约束混凝土方柱的力学性能

doi: 10.13801/j.cnki.fhclxb.20211012.004
基金项目: 国家自然科学基金(51808419)
详细信息
    通讯作者:

    曹玉贵,博士,副研究员,硕士生导师,研究方向为CFRP加固混凝土结构、超高性能混凝土结构 E-mail: caoyugui@163.com

  • 中图分类号: TU375

Mechanical behavior of CFRP confined concrete square column under different strain rates

  • 摘要: 为研究不同应变速率下碳纤维增强树脂复合材料(CFRP)约束混凝土方柱的力学性能,本文采用CFRP约束倒角半径为15 mm、45 mm、60 mm的方形试件,进行应变速率为3.3×10−5 s−1、3.3×10−3 s−1的加载试验,分析了试件倒角半径和应变速率对CFRP约束混凝土方柱的应力-应变曲线、轴向应变-环向应变曲线和抗压强度的影响。结果表明,试件的应力-应变曲线的第二段斜率和抗压强度均随着试件倒角半径与应变速率的增加而增大;轴向应变-环向应变曲线的斜率随着应变速率的增加而增大,随着CFRP的层数增大而减小。最后基于试验数据对现有文献的模型进行评估,结果表明Lin等模型的预测结果与准静态下FRP约束混凝土方柱的轴向应变-环向应变关系曲线比较吻合,魏洋等模型能够预测FRP强弱约束状态,Cao等模型可以用于预测不同应变率下CFRP约束混凝土方柱的抗压强度。研究成果为CFRP约束混凝土方柱的进一步应用提供了试验依据与理论基础。

     

  • 图  1  试验装置

    Figure  1.  Test setup

    LVDTs—Linear variable displacement transducers

    图  2  CFRP约束混凝土方柱典型破坏状态

    Figure  2.  Typical failure mode of CFRP confined square concrete column

    图  3  CFRP约束混凝土方柱试件的应力-应变曲线

    Figure  3.  Stress-strain curves of CFRP confined square column

    图  4  CFRP约束混凝土方柱轴向应变-倒角环向应变曲线

    Figure  4.  Axial strain-lateral strain curves of CFRP confined square concrete column

    图  5  CFRP约束混凝土方柱抗压强度变化趋势

    Figure  5.  Compressive strength trend of CFRP confined square concrete column

    图  6  CFRP约束混凝土方柱抗压强度模型评估

    Figure  6.  Compressive strength model evaluation of CFRP confined square concrete column

    I—Overall absolute error

    表  1  碳纤维增强聚合物(CFRP)约束混凝土方柱试件参数

    Table  1.   Specimen parameters of carbon fiber reinforced polymer (CFRP) confined square concrete column

    Specimen S/s−12r/bLfco/
    MPa
    fcc/
    MPa
    1CFRP-C(R60S1A) 3.3×10−5 0.8 1 33 54.05
    1CFRP-C(R60S1B) 3.3×10−5 0.8 1 33 53.43
    2CFRP-C(R60S1A) 3.3×10−5 0.8 2 33 70.84
    2CFRP-C(R60S1B) 3.3×10−5 0.8 2 33 74.76
    1CFRP-C(R60S2A) 3.3×10−3 0.8 1 33 54.92
    1CFRP-C(R60S2B) 3.3×10−3 0.8 1 33 56.98
    2CFRP-C(R60S2A) 3.3×10−3 0.8 2 33 72.85
    2CFRP-C(R60S2B) 3.3×10−3 0.8 2 33 77.07
    1CFRP-C(R45S1A) 3.3×10−5 0.6 1 33 47.01
    1CFRP-C(R45S1B) 3.3×10−5 0.6 1 33 47.78
    2CFRP-C(R45S1A) 3.3×10−5 0.6 2 33 63.00
    2CFRP-C(R45S1B) 3.3×10−5 0.6 2 33 60.93
    1CFRP-C(R45S2A) 3.3×10−3 0.6 1 33 48.00
    1CFRP-C(R45S2B) 3.3×10−3 0.6 1 33 50.28
    2CFRP-C(R45S2A) 3.3×10−3 0.6 2 33 68.54
    2CFRP-C(R45S2B) 3.3×10−3 0.6 2 33 63.29
    1CFRP-C(R15S1A) 3.3×10−5 0.2 1 33 36.14
    1CFRP-C(R15S1B) 3.3×10−5 0.2 1 33 42.45
    2CFRP-C(R15S1A) 3.3×10−5 0.2 2 33 50.21
    2CFRP-C(R15S1B) 3.3×10−5 0.2 2 33 49.13
    1CFRP-C(R15S2A) 3.3×10−3 0.2 1 33 43.75
    1CFRP-C(R15S2B) 3.3×10−3 0.2 1 33 40.35
    2CFRP-C(R15S2A) 3.3×10−3 0.2 2 33 51.37
    2CFRP-C(R15S2B) 3.3×10−3 0.2 2 33 49.40
    Notes: For the specimen: The first number and letter—Number of CFRP layers; The following letter C—Concrete specimen; The first letter and number in parentheses—Corner radius; S1 and S2 —Strain rate of 3.3×10−5 s−1 and 3.3×10−3 s−1, respectively; A\B—Batch of specimen. For example, 1CFRP-C(R60S1B)—The second batch of concrete specimen with corner radius of 60 mm is wrapped with 1 layer of CFRP, and strain rate is 3.3×10−5 s−1. S—Strain rate; fco—Compressive strength of concrete; fcc—Compressive strength of CFRP confined concrete under different strain rates; r and b—Corner radius and side length of the square section, respectively; L—Layer number.
    下载: 导出CSV

    表  2  CFRP布材料性能

    Table  2.   Material properties of CFRP

    Strain
    rate/s−1
    Tensile
    strength/MPa
    Rupture
    strain
    Elastic
    modulus/GPa
    TestMeanTestMeanTestMean
    3.3×10−3407439650.01720.0171239237
    3.3×10−537650.0171233
    下载: 导出CSV

    表  3  CFRP约束混凝土方柱强弱约束判别准则

    Table  3.   Harden and soften confinement criterion of CFRP confined square concrete column

    Ref.Function expressionm value
    1CFRP-C(R15S1)2CFRP-C(R15S1)
    Mirmiran et al[17]$ m = \left( {\dfrac{{2r}}{b}} \right)\dfrac{{{f_{\text{l}}}}}{{{f_{{\text{co}}}}}} \geqslant 0.15 $0.054(S)0.108(S)
    Wei et al[1]$ m = \dfrac{{8r{t_{\text{f}}}}}{{{b^2}}}\left( {\dfrac{{{f_{\text{l}}}}}{{{f_{{\text{co}}}}}}} \right) \geqslant 0.2 $0.107(S)0.214(H)
    Chen et al[18]$ m = \left( {1 - \dfrac{2}{3}{{\left( {1 - \dfrac{{{\text{2}}r}}{b}} \right)}^2}} \right)\dfrac{{{E_{{\text{frp}}}}{t_{\text{f}}}{\varepsilon _{{\text{frp}}}}}}{{b{f_{{\text{co}}}}}} \geqslant 0.098 $0.078(S)0.157(H)
    Notes: fl—Confinement stress of CFRP; Efrp, tf and εfrp—Elastic modulus, thickness and ultimate strain of CFRP, respectively; H—Harden confinement; S—Soften confinement.
    下载: 导出CSV
  • [1] 魏洋, 吴刚, 吴智深. FRP 约束混凝土矩形柱有软化段时的应力-应变关系研究[J]. 土木工程学报, 2008, 41(3):21-28. doi: 10.3321/j.issn:1000-131X.2008.03.004

    WEI Yang, WU Gang, WU Zhishen. Study on the stress-strain relationship for insufficient FRP-confined rectangular concrete columns[J]. China Civil Engineering Journal,2008,41(3):21-28(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.03.004
    [2] GUO Y, XIE J, XIE Z, et al. Experimental study on compressive behavior of damaged normal- and high-strength concrete confined with CFRP laminates[J]. Construction and Building Materials,2016,107:411-425. doi: 10.1016/j.conbuildmat.2016.01.010
    [3] LAM L, HUANG L, XIE J H, et al. Compressive behavior of ultra-high performance concrete confined with FRP[J]. Composite Structures,2021,274:114321. doi: 0.1016/j.compstruct.2021.114321
    [4] CHEN G, LIU P, JIANG T, et al. Effects of natural seawater and sea sand on the compressive behaviour of unconfined and carbon fibre-reinforced polymer-confined concrete[J]. Advances in Structural Engineering,2020,23(14):3102-3116. doi: 10.1177/1369433220920459
    [5] CHEN G, ZHANG J, WU Y, et al. Stress-strain behavior of FRP-confined recycled aggregate concrete in square columns of different sizes[J]. Journal of Composites for Construction,2021,25(5):04021040. doi: 10.1061/(ASCE)CC.1943-5614.0001150
    [6] WEI Y Y, WU Y F. Unified stress-strain model of concrete for FRP-confined columns[J]. Construction and Building Materials,2012,26(1):381-392. doi: 10.1016/j.conbuildmat.2011.06.037
    [7] WU Y F, WEI Y Y. Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns[J]. Engineering Structures,2010,32(1):32-45. doi: 10.1016/j.engstruct.2009.08.012
    [8] ZHANG Y, LU Z, CAO Y. Unified strength model based on the Hoek-Brown failure criterion for fibre-reinforced polymer-confined pre-damaged concrete columns with circular and square cross sections[J]. Journal of Central South University,2020,27(12):3807-3820. doi: 10.1007/s11771-020-4563-z
    [9] 马晨雨, 姬宇鹏, 刘大为, 等. 倒角半径与加载速率对FRP弱约束方形混凝土柱的承载能力影响[J]. 复合材料科学与工程, 2021(7):63-67. doi: 10.19936/j.cnki.2096-8000.20210728.010

    MA Chenyu, JI Yupeng, LIU Dawei, et al. The effect of corner radius and strain rate on the compressive strength of FRP weakly confined square concrete[J]. Composites Science and Engineering,2021(7):63-67(in Chinese). doi: 10.19936/j.cnki.2096-8000.20210728.010
    [10] WU Y F, WANG L M. Unified strength model for square and circular concrete columns confined by external jacket[J]. Journal of Structural Engineering,2009,135(3):253-261. doi: 10.1061/(ASCE)0733-9445(2009)135:3(253)
    [11] CAO Y G, JIANG C, WU Y F. Cross-sectional unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer[J]. Polymers,2016,8(5):186. doi: 10.3390/polym8050186
    [12] CAO Y, LIU M, WU Y F. Effect of low strain rate on the axial behavior of concrete in CFRP-confined circular cylinders[J]. Construction and Building Materials,2020,255:119351. doi: 10.1016/j.conbuildmat.2020.119351
    [13] DEMIR C, KUCUKKAPILI A, DOYRANGOL D, et al. The effects of loading rate and duration on the axial behavior of low-strength and medium-strength noncircular concrete members confined by fiber-reinforced polymer sheets[J]. Polymers,2014,6(6):1685-1704. doi: 10.3390/polym6061685
    [14] 张玉敏. 不同应变率下混凝土力学性能的试验研究[D]. 北京: 北京工业大学, 2012.

    ZHANG Yumin. Experimental study of the mechanical properties of concrete under different strain rates[D]. Beijing: Beijing University of Technology, 2012(in Chinese).
    [15] 曹玉贵, 张扬, 侯灿, 等. FRP约束损伤混凝土环向应变-轴向应变关系[J]. 哈尔滨工业大学学报, 2020, 52(9):85-91.

    CAO Yugui, ZHANG Yang, HOU Can, et al. Lateral strain-axial strain relationship of FRP confined damage concrete[J]. Journal of Harbin Institute of Technology,2020,52(9):85-91(in Chinese).
    [16] LIN G, TENG J. Advanced stress-strain model for FRP-confined concrete in square columns[J]. Composites Part B: Engineering,2020,197:108149. doi: 10.1016/j.compositesb.2020.108149
    [17] MIRMIRAN A, SHAHAWY M, SAMAAN M, et al. Effect of column parameters on FRP-confined concrete[J]. Journal of Composites for Construction,1998,2(4):175-185. doi: 10.1061/(ASCE)1090-0268(1998)2:4(175)
    [18] 陈炳聪, 张力文. FRP约束混凝土强弱约束判断准则[J]. 材料导报, 2009, 23(z1):284-288. doi: 10.3321/j.issn:1005-023X.2009.z1.085

    CHEN Bingcong, ZHANG Liwen. Criteria of powerful or weak confinement for FRP confined concrete[J]. Mate-rials Review,2009,23(z1):284-288(in Chinese). doi: 10.3321/j.issn:1005-023X.2009.z1.085
    [19] 张宝超, 潘景龙, 姜洪斌. FRP约束混凝土快速荷载下的强度计算[J]. 哈尔滨工业大学学报, 2003, 35(8):958-961. doi: 10.3321/j.issn:0367-6234.2003.08.017

    ZHANG Baochao, PAN Jinglong, JIANG Hongbin. Computation of strength for FRP confined concrete under fast loading[J]. Journal of Harbin Institute of Technology,2003,35(8):958-961(in Chinese). doi: 10.3321/j.issn:0367-6234.2003.08.017
    [20] CAO Y, LIU M, ZHANG Y, et al. Effect of strain rates on the stress strain behavior of FRP-confined pre-damaged concrete[J]. Materials,2020,13(5):1078. doi: 10.3390/ma13051078
    [21] 张扬, 曹玉贵, 胡志礼. 基于Griffith破坏准则的FRP约束未损伤混凝土和损伤混凝土的抗压强度统一模型[J]. 复合材料学报, 2020, 37(9):2358-2366. doi: 10.13801/j.cnki.fhclxb.20191223.002

    ZHANG Yang, CAO Yugui, HU Zhili. Unified strength model based on Griffith failure criterion for FRP-confined undamaged and damaged concrete[J]. Acta Materiae Compositae Sinica,2020,37(9):2358-2366(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191223.002
    [22] 曹玉贵, 赵国旭, 尹亚运. 基于广义回归神经网络的纤维增强聚合物复合材料约束损伤混凝土强度预测[J]. 复合材料学报, 2021, 38(5):1623-1628. doi: 10.13801/j.cnki.fhclxb.20200804.001

    CAO Yugui, ZHAO Guoxu, YIN Yayun. Strength prediction of fiber reinforced polymer composite confined damaged concrete using general regression neural network[J]. Acta Materiae Compositae Sinica,2021,38(5):1623-1628(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200804.001
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  330
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 修回日期:  2021-09-08
  • 录用日期:  2021-09-24
  • 网络出版日期:  2021-10-13
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回